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PREFACE

As a contribution to The RAND Corporation's studies in system

analysis and synthesis, a scheme is delineaced in this report for

approximating prescribed system characteristics by sums of exponentials

or by cational functions. The analytical results and computational

aids which are derived are applicable to a broad class of system

optimizations, such as those found in radar filter design; numerical

examples are provided to illustrate their application to practical

and important design problems. The contents of this Hemoranddm should

be of interest to the Air Force Systems Command, as well as to others

concerned with numerical methods of syFtem design and signal analysis.



SUMNAV

In many system design problems, the representation of certain

system attributes uust be in terms of exponentially damped sinusoids
4

or of ritional functions in order to be physically meaningful. In

this Memorandum, two sets of orthonormal elements are derived which

should be usefuil for such approximation problems. One set constitutes

a basis for exponential approximation and the other a basis for ratiunal

function approximation.

T.he closure properties of the two-parameter exponential and

rational functions are examined first. Expressions are then preserved

for efficiently determining the orthon..rmal elements of each bas~s.

Important characteristics of the sets are also discussed, and -,oecial

relations among the coefficients generating the bases are decuced.

Once the general relations for the orthonormal elements are

developed, the two sets are applied to typical approximation problems

encountered in iignal processing and system design. Tba computations

involved in the solut ion of these problems are illustiated in the

final portion of the study. The computer programs used for the sample

problems are described in Lhe appendices and should be helpful in

similar ies1gn situations.

m - -
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I. INTRODUCTION

To ensure physical realizability in the synthesis of a system, it

is frequently necessary to represent certain of the system's $'tributes

by approximanta other than algebraic polynomials. Such is the case,

for instance, in the determination of opt.inum filters for smoothing

and prediction where it is convenient to approximate empirical or

analytical spectra of random processes by readily factorized rational

functions.t The utility of exponential functions is well known in the

design of linear networks for a prescribed transient response. Simi-

larly, sums of exponentials often afford the most suitable approxima-

tions to cross-correlation measurements, to radioactive decay and gas

absorption data, to mass spectrographs, and to ultracentrifuge analysis

curves.

In the present treatment of rational and expunential function

representations, two orthonormal bases for exponential and rational

function approximations are de•ived. The bases consist of two-parameter

elements which provide more efficient minimum mean-square-error approxi-

mation than two corresponding one-parameter sets investigated previously.

After the closure properties of the two orthonormal bases are examined

in detail, new expressions are developed tor efficiently generating the

individual orthonormal elements. Several rclations are then deduced

which connect important properties of each basis. Useful identities

and numerical techniques i'-volving the basis roefficlents are derived

The term "rational function" denotes a ratio of algebraic poly-
nonials in which the denominator polynomial is not generally a constant.



which obviate storage of eitter the form- or selected values of :he

orthonormal approxiimants. Finally, several n=,erical examples are

provided to illustrate both algorithms for expGnerntial and rational

function approximation.

.!I
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I1. SCOPE OF INVESTIGATION

In a previous investigation, the linearly independent functions

I
-not 0 < t <

"t 0 t'0 (1)

n= 1,2,...; Im(o) = 0; Re(a)

and

1 S(W) < W < < Cc
n na + jw

(2)

n = 1,2,...; Im(a) = 0; Re(a) > 0

were examined in detail.' The more general sets comprised of

e"-n-jt 0 < t <

Tn(t)
0t I t : 0 (3)

n 1,2,...; Im(a) Im(b) 0; Re(C) > 0

and
1

In(®) na + j(w-no) -) <w<

(4)

n = 1,2,...; Im(a) = im(O) = 0; Re(a) > 0

will be treated in this Memorandum. The primary motivation for such

a study is that for a fixed number of orthonormal elements, an expan-

sion of a prescribed function in terms of (pn(t) or #n(w) provides a

minimtun mean-square-error less than or equal to that for n(t) or

(w), recpectively.

S
See Tables 1-7 of Ref. 1.
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In the remaining sections, the results obtained for the one-

parameter sets, Eqs. (1) and (2), are extended to (tn(t)} and f*n(w)),

and numerical schemes are derived for simplifying least-square repre-

sentationE involving (pn(t)] and (*n(W)). In so doing, the following

topics are considered:

o Closure of (£n(t)) and (In(w))

o Determination of the orthonormalized setst

m
Xm(t) = Ymn Pn(-) Ym(t) = [Xm(t) + Xm(t)]

n-i
ated

m
nnd= m ). (W) ' Vm( W) = E Um(W) + U ( W)]
n=l

o Properties of Xm, Ym, U M Vm, Ymn' and Imn

o Selection of a and 0

o Computational aspects of approximants

M M

g(t) Q am X (t) and h(w) I bm U(w)

m=l mmu

t
The symbol * denotes complex conjugate.
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III. CLOSURE

In order to approximate prescribed functions arbitrarily closely

by linear combinations of the elements p n(t) and *n(W), it is necessary

to verify the closure of the sets f[n(t)) and (in(w)). Since the

functions cn(t) and *n(W) are related through a linear operation, the

Fourier transform, it will be possible to demonstrate closure of

(w)) in the space L2 (-wm,) once closure of fyn(t)' in L2 (OC) is

shown.

An assemblage of functions (Vn(t)) of integrable squaret is closed

over (a,b) if the integral
b *

y(t) cn(t) dt =0 n 1,2,... (5)

implies that y(t) C L 2(a,b) vanishes everywhere in (a,b) except perhaps

over a set of measure zero. The closure property derives its signifi-

cance from a theorem that states that a set of functions is closed if

and only if it is complete.(2) Moreover, if a set (cp(t)) is complete,

2
then for any function y(t) C L (a,b) and any positive a, there is a

sum function
N

^(t) = an 'n(t) (6)

n= 1

such that

b Iy(t) _ 9(t) 12 dt < g (7)
a

This property is symbolized by y_1(t) C L 2(a,b).
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Equations (5) end (6) represent a special case of the general

situation in which a closed finite or infinite system of elements

[Yn(x)) in a Hilbert space Y permits arbitrarily close approximation

2(in the L norm) to every element y(x) C Y by a finite linear combina-

tion of the yn(X). To establish this property for the elements 9p(t)

in Eq. (3), Szasz's theoremt can be invoked:

A necessary and sufficient condition for closure
2 Xn

L2(01,) of the functions x , Re(n > -

is divergence of

1 + 2 (8)

nl 1+ nI

From the previous definition of closure, if Ix n3 is not closed

2 2in L (0,1), a function y(x) CL (0,1) exists which is orthogonal to
Xnever; element x ; that is

1 < y(x) 2 < (9)

0

and ,

y(x) x dx . 0 n- 1,2,... (10)

f nL2

Conversely, if the set (x XJ is closed, a function y(x) CL (0,1),

which is not identically zero, does not exist so that Eqs. (9) and

(10) are satisfied. Accordingly, with the change of variable x = et

in the set Ix n], the conditions given in Eqs. (9) and (10) become

See Ref. 2, pp. 32-36.
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0 < J y(et) 12 et dt < (9')

and t(l+.*)

y(et) e dt- 0 n = 1,2,... (10')

t t/2With the further transformation y(et) e = y(t), the last two

relations give

-( ) 2
0 < y dt < (9")

and S_ tQ++xn)
y(t) e dt = 0 n = 1,2,... (10")

n 2
Thus, closure of the functions x in the space y(x) C ( )

is equivalent to existence of a function y(t) satisfying Eqs. (9")

and (10v). This in turn is equivalent to the closure of the functions

tQ(+X) -2 nt(½+) 2

e in L (-m,O), or e in L (0,c).

In the application of interest, where (pn(t) = en(aj )t n
n n

satisfies the equation

s (-n + na) - jnO

n = 1,2,...; Im(a) = Im(O) = 0; Re(a) > 0

Consequently,

Re(XJ = -½ + no > -I n = 1,2,...; Re(o) > 0, Im(a) = 0 (12)

as required by Szasz's theorem. Substituting this value of A in
n

Eq. (8) yields
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1D+ 2(~ + no) ca2r 13

I I + (-½ + na) 2 + (no) X n 2n(a2+P2) - + 5!4
n-i1n

According tc Szasz's theorem, closure of (rpn(t) = e-'(O-jo)tj in

2
the space y(t) C L (0,w) rests on divergence of this sum.

Application of the integral test(3) to the sum in Eq. (13)

indicates that divergence of the infinite series depends on divergence

of the integral

2 2F dt (14)

11+ (- +a~

The resultant integration is

2 r2 4

(15a)

a log 1 (.2+ ) 2 2 at+ 5/4]
+ (2 ) L +

or

2a 2  fr r L -1 [2(a 2+8 2) lo [a__ 2 +02_a54220 2 ½ -tn 2(o2+,2)-r 2 2 log [o2+,2-a.+5/4] -'-

(a 2 .s2 ) (4a 2+580)h 2j4j + 2 (a 2+0 )

L (15b)

+ lira 2 2 log [(02+ +) 2 2 _ at + 5/4]-.•-•o (a 2• )

2 2 femo q 1b
Since a and 8 are positive and bounded, the last term of Eq. (15b)

is unbounded. Consequently, the series of Eq. (13) is divergent, and

the closure conditions of Szasz's theorem are satisfied by the set
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'Pn(t)}. It follows, therefore, that frfn(t) = e-n((TJO)t) is also

complete in the space of functions y(t) C L 2(0,w).

The closure of •n(w)) in the transform space D(w) C L 2(-c,)

is deducible directly from a lemma of Wiener's on invariance of

closure.! His lemma states that the closure of a set of functions is

preserved in any linear transformation which carries the whole of L2

into itself and which conserves the integral of the squared modulus of

each function. Quantitatively, the lemma states that:

Given a linear transformation such that to every function

2 2
f(x) c L (a,b), there corresponds a g(y) C L (c,d), if

f.(x) - g (x) and

c fj(x) -W c g.(y)

ii~t W + f 2 (x) - gl(y) + g 2 (Y)

fi* f' If j X)1 dx g J I~(y)I2 dy j =1,2,....

a C

then the closure properties of a sequence (f (x)] are the sameJ

as those of (gj(y)).

The transformation which carries the set [pn(t)J into the set

* (w)) is the Fourier transform, since

3•n(t)) J ;.n(t) e-jt dt = 0 e"(n j-j )t dt

(16Y;
-e

e-(n+Jw-jn0)t _* ______

ro4jw-jn O na+j(w-no) - n

tSee Ref. 2, pp. 28-30.
ti

The symbol -. denotes correspondence.

ttdenotes the Fourier transform.
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Because the Fourier transform is a linear operator, properties (i)

and (ii) of Wiener's lemma are satisfied. Moreover, Parse',al's

theorem(4) indicates that

J I iPn(t) 12 dt = •-I J n() 2 dw .In(2Trf) i2 df (17)
-O 217 IW (2nTO)

where w = 2rf. Hence, all the conditions of the closure invariance

lemma are fulfilled, and the set •n (2TTf)] is also closed in L 2(--,).



IV. ORTHONORMALIZATION OF fcn(t)J and f•n(w)J

The closure properties discussed in Section III ensure completeness

2
of (cp(t)) in the space of squared-integrable functions d(t) C L (O,w)

n2
and completeness of tn (w)) in D(w) CL 2(-a,,). Consequently, the

theory of Hilbert spaces can be applied to two further items of com-

putational importance: orthonormalization of (cp(t)) and t

and representations of functions d(t) C 2(O,w) by sums of elements

9n(t) and #n(W).

The task of orthoriormalizing the set f np(t)] (or, analogously,

the set *n(w))) entails finding coefficients ymn in the functions

X M(t),
m

X -M Ymn Pn(t) m= 1,2,... (18)

n= 1

such that

" xr(t) x(t) dt = 6r9
I r~t X re 19

T.he existence of these constants y mn is guaranteed by Theorem IV.A

of Ref. 5:

Let , f a finite or infinite sequence of elements

such that any finite number of elements Pl "P2,.'.K it re

linearly independent. Then constants

YIl

Y2 1  Y22

Y3 1 Y32 "f33

The symbol 6 is the Krone.kir del-'a: 6 r I for r - s; o = 0,
othervise.
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can be found such that the elements

Xl I Yll Ti

x 2 " Y21 + Y22 T2

X3 = Y31 'P1 + Y3 2 92 + •33 93

are orthonormal.

The proof of this theorem provides an iterative algorithm, the Gram-

Schmidt orthogonalization procedure, for actually determining the

functions X (t). The recursion is given by the following:
m

x, - P1  and x. - /1xl11

x2  ' 'V2 - ,Xl) xind X2  =x 2 /11X 211

(20)'

m

+- . (ml'X) x. and X = x1 /Ifx~ 1 f
k-I

Although the functions X m(t) can be determined by this iterative

procedure, Eqs. (20) provide only an implicit expression for the

coefficients ymn generating (Xm(t)}. An additional drawback to the

above scheme is that the recursive evaluation of the basis elements

is exceedingly laborious.it

tThe notation :Ifjl denotes f(t) f*(L) dt , and (f,g) symbolizes

f f(t) g (t) dt. Thus, NfO (f,f).

See Ref. 1, pp. 12-14.
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To circumvent these difficulties, it is necessary to abandon

the Gram-Schmidt approach and to consider obtaining the Ymn from

methods based on the set n(n(w)J deriv-d from the Fourier transform

of pn(t). With the aid of Parseval's theorem and other key results

from the theory of functions of a complex variable, it will be possible

to achieve an explicit relation for the coefficients Ymn' as well as

for the transform parameters X in the equation

nn

U m(W) I X inn *n(w) (21)
n=

where

Ur(W) U*(w) dw = (22)

Applicanion of the Fourier transform, Eq. (16), to the elements

9 n (t) and *n(w) of Eqs. (3) and (4) reveals that

in m

inn

()e JWt Iw= w eJWt d2T L,,® r fmn *nw) d

n-- 1 (23)
M miX ccJ 2i• U (w) dw dw X-n n(t - X (t)

where mn is finite. Hence, Xf(t) and U ( t) are Fourier transform pairs.
i n

SSince U in(w) is assumed to be orthonormal, Parseval's theorem leads to

, Um~(W) Un)d 2 Xm(t) Xn(t) dt = 6n (24)

Consequently, if the coefficients mnin Xm(t) are chosen as

• •• =
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.4

IL (25)

Ya

then the set JX ( w)j vill also be orthanor.-al, for

2n

2nt *(t) dt1 1J
n-l LkU

t) vr2(tiX 4P (t) dt (26)

an. t) nk*( d

jJ

fk-1
St)(t n dt

-ID

- n

Orce the orthonormal elemei.ts [U (w)1 are fo-a:d, !7erefore, the

orrhonorn•a set [X (t)l is asio uniquely determined.

Inn
T1c condition of orthonoiT-ali-tv and the str-zcture of *(w)

suggest a scheme for finding thZ parameters k of U (,L'). Themn

procedioe is based on two results of analytic Aunction theory., and

is an extens.on of the application of the theorems found in Refs. 1

and 5.

By observing the pole patterns of the rationalized functions

U (w), m = 1,2,..., it is possible to compute the coefficients X.

th
which determine the m orthonormal function U (w). In U.(w), for

example,

U (W) (27)
CyTj(W-0)
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z pole is located at jx = -o- jQ. In U2 (w), where

('21 -22

2 o+j (m-a) 2cY+j(w-20)

(28)
=(2;•21+22) + j"(ý 21 "+k22 ) - 21+X22)1

poles are located at jwc -O-jo and jz = -2a+j2o. In general, for

(M) + M (29)

equally spaced left-half s-plane (LHP) poles are located at jW =-;+j5,

.... , - Si-ilarlv, the conjugate function U (tv) has
m

equally spaced right-half s-plane (RiP) poles at j:- =+jo, 2a+2j.,

S3C+j=ý. Therefore, if V (x) is expressed as
11

a
1W() + e- ' a = norm-alizing constant (30)

i1

then to orthogonalize U1 (x) and U,(W), i.e., to ensure that

U '2(W) U'I(W) d:.L (31)

U2 •) =ust be chosen as

a 2 a - ( w- 0)

'C j(,-•) 2=~ a , 2 nornalizing constant (32)
22

In this way, the zero of U2,() cancels the RHP pole of U. (w) in the

product U"2 UP and the integrand of Eq. (31) becoý-.es analytic in the

* (6)
RHI. Since U U also satisfies Jordan's lepta, the Cauchy integral

2 1

theorem(7) can be applied to the int-gral in Eq. (31) (with the contour
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of integration taken in the clockwise sense as the jw-axis and infinite

RH? semicircle) to establish that

CD * - l J a l Ia 2 d s 0

fK Uj2 (W) U1 (W) d= - -J [es+o-ji [s+2a-j2o]

Similarly, if U (w) is selected as
3

a 3[oc-j(w-0)] [2a-j(w-28) ]

U3 (w) = [7Ja(w-0)] [2o+j(w-2-)] [3aj(w-3)J] ' a3 = normalizing (34)
constant

then both U 3 U2 and U3 U1 are analytic in the RHP, and consequently

both equalities

-DU3( w w)l -I aja3 ds 0

and 
(D)3 - j " D [ s+2a-j2o] [s 4-3ay- i3

U j(w) d W d =-a- I a 3s+22 - j28][ 3-j3] = 0 (36)

and

U 3(j) UC(=) d -[w2o-2jo] [-i+30-J3o3-

are guaranteed by Jordan's lemma and the Cauchy integral theorem.
th

Extending the above sequence to the m element of the orthogonal

basis, it is observed that the general form of U (w) must be
m

~ w) a+j(w-8) m m= 1
mm

Um(W) =(37)

a [a-j(w-)1] [2a-j(w-20)].. [(m-l)a-j(w-mO+-)]
+ r I m 2,3,...

whete a is a normalizing constant.
m

The constants a are readily determined by requiring that the
m

set (Um(w)] be orthornormal; i e.



-17-

S Um(W) U (w) dw = 1 (38)

Substituting Eq. (37) for U (w) in the normality condition Eq. (38)

rgives p
cciles 2-a2 [j '(w-0) 1. -(w)- "[(m- 1)me-j (w-m+)1}

i m am)2 d(jw) - = 2nj Jam21 I
= D -m [mo+j (U)-'mo)]-[-•-j (W-mp) ] mo+jmo-.i

jtm=-mj+jmm

17 am I , , , .

Since the U (w) are already orthogonal, the normality condition Eq. (38)

can be satisfied by choosing the a real in Eq. (39) and by assigning
m

to a the value
m

a = ,-G m = 1,2, (40)[ni I F *'"

In view of Eq. (37), the orthonormal basis functions can be finally

written as

eV~4j(w-B) ,m = 1
rn-i

U (W) 1 (41)

n m , - , , .f [no+j(w-no)]

n= 1
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The coefficients X mnin the series representation of UM(W)'

Eq. (21), can now, be related to Eq. (41) by

(42)

= 2 k+-j (w-ko) m 2,..
k= 1

Multiplying both sides of Eq. (42) by no~sj(w-rio); 1 S n I m, gives

(43)m r
-~~ =o-~-p m 2,3 .... ; 1 1n Srm

k=1 mk k0-j (w-ko)

Since Eq. (43) must be valid for all w, it must also be an identity

for w - no-jna, or jw =-na+jný. Accordingly, with jw =n~jo

Eq. (43) reduces to

rn-i

nou r*1 x(44)
TTr ~- Im mn

fl [-c(n-r)+Jo(n-r)] fl C L-G(n- r)+j P(n- r)]

r=l 1 ~

so that
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mH-I

x =r=l m = 2,3,...; l5n:rn (4V

Jf r-n]
r~n

0 m 1,2,...; n > m

In view of Eq. (25), ymn is immediately determined for the ortho-

normal set [Xm(t)] as ymn = F2TT Xmn

The preceding derivation of the orthonormal basis (Um(w)] permits

a simple determination of the allied real-valued functions of W

mi1.rl/ * 1 I' * *

Vm(W) = / [Um(W) + Um(W)] = C m nmn *n( + n n(w)] (46)

n= 1

Assurance of orthonormality for the set (Vm(w)] follows from the

relations

V (w) V*(w) dw [Um + Um n [Un + Un] dw (47)

or

V (W) * U Un dw + U UU dw + J Um Un dW

O (48)

+-- U U dwm n
-m

For the functions n (w) defined in Eq. (2), the result for X mn

with 1 = 0 agrees with the quantity• n derived in Ref. 1.
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Since the U are orthonorr.-,l (Eqs. (33-38)) the first two integrals

on tne right 3ide of Eq. (48) yield the Kronecker delta

V V dw =6 + U U dw+ f U U dw (49)
-!m n mn m n m n

It is evident from Eq. (37) for U (w) that the integrand U U in the
Sa'. n

first integral of Eq. (49) contains only LHP poles. Since Jordan's

lemmat is satisfied for U U the first integral of Eq. (49) may be
m nD

evaluated over the infinite RKP semicircle with diameter on tha jw-axis.

Since Um U is also holomorphic in this Ril region, Cauchy's integral
n

theoremt guarantees that the integral of U U vanishes. Similarly,
run

with U U holomorphic in the entire LHP, it can be argued that the
m n

second integral of Eq. (49) is also zerc. Consequently, Eq. (49)

becomes

f V m(W) Vn (w) dw 6 mn (50)

The rational fun-ction expression of V may be written with the

aid of Eqs. (46), (21), and (4) as

m1 * *1 (X +X ) no + j(-\m+Xn)(w-no)
V() 1 m'rn run rn un (1

1 / I I (na) 2 + (w-rn)2

or
m mno° w -n+

V (w) - /2 a n+ /2 b (52)ttt
m mn (no)2 + (w-no) 2 n1 (na) n+ (w-n)n 1 n=l (o2+('B

See Ref. 6.

It
See Ref. 7.

ltt For 0 = 0, Xmn is real and b = 0. When /2 a is also anrunf mn

integer, m,n - 1,2,..., V M(w) takes the form of the envelope-delay

components examined in Ref. 1.

I
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where a and b are related to kmn' Eq. (45), asmn mn

Sa + jb (53)
mnn m mn

Thus, Eq. (52) can be rationalized to give

r 2a (_) a m=iV7 2 2' n

(54)
Vm( w )a + w�)mr- i

M(O+JO) - jw] f [n(o+jo) - jw]

"- Re n-I m = 2,3,...

i [(na) 2 + (w-no )23

n=1

Similarly, in the transformed space, it can be shown that the

functions

m

Ym(t) v,1 [Xm(t) + X(-t)] X v'?[nmn Tn t)+Pmn (-] (55)
n=1 n= 1

comprise an orthonormal basis. Equation (16) indicates that Tcn(t)

and * n(w), as defined in Eqs. (3) and (4), are Fourier transform

pairs. Thus,

CD

*n(t) J *n(W) e j dw (56)

and

f i • * ejWt dw (57)

•n(- t) = -T m*n

i 'Pn TIT
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Substituting these relations into the expression for V (w),m

[m m

V (W) = (W) + U(W) Xmn *n(w) + mn (w) (46)
n-- n-1

it follows that the Fourier transform of V (W) is

[m ~ m*

1 V (w ej Wt dw"

/ X 'dw= tm )n(t)) + 2-mt) (58)
n= 1

Consequently, Parseval's theorem and the orthonormality relation,

Eq. (50), for V (w) allow Eq. (50) to be written as
m

MY(t)Y(t) I* 1 (59)

7.7 79'_dt 2i f V m(w) V n(w) -w 2rI mnJ0  cc~T 2r ,

so that
•2* (60)
Y (t) Yn(t) dt ( 6 rn

0

From Eqs. (55), (53), (45), and (3), the orthonortal basis functions

Y m(t) can be finally expressed as the complex-valued functions of t

yT(t) .. m 1,2,.. (61)

1mn=l

or, expressing Xmn in polar form,
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YCt) =Q /TT lA e-naltl os[not + tF arg()] 62

(62)

+ ~j sin [noltl + arg (km)]} m=,2.. V

The key relations established for the orthonormal bases XM(t)

and U (w) and the equations determining the orthonormal basis coef-
m

ficients X are summarized in Table 1.
mn
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V. SPECIAL PROI•RTIES OF THE BASIS COEFFICIENTS n AND
urn

THE ORTHONORMAL ELEMENTS X (t), U(W)m

The preceding analysis culminates in Eq. (45) for the basis coef-

ficients X. which generate the orthonormal elements Um(W), Vm(W),
mn

X (t), and Y (t), In order to detect errors in the computation of

these X , it is de3irable to provide a check-sum relation for the
mn

n analogous to the expression for the coefficients o of Ref. 1.mn mn

It is shown in Ref. I that for • = 0 an identity

m
ow (iml t6)

& (-1) m = 1,2,... (63)

mn &1

exists in which the o are given by

1.(m-1) (-i wnll) 1 5 n 5 m = 1,2,...n-I '''"

A , tt
0mn = (64)

0 n>m

The &n are related to the orthonormal elements R (t) or W ((w) by

mn 2m mm
m A -nat 0<t < n= 1,2,... ( 6 5 It+

and

Wm(•) •%nna + iw"'

n- 1

See Ref. i, p. 22.
tt

See Ref. 1, p. 21.
ftt

See Ref. i, Table 1.
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For the m derived in this Metorandu=, it is similatly de-onstrablean

that

Mr• km "=: (- ) '+

-== = , .... 7,
n=l .- =1

where 06 is definei as

n=

M-1

%n - "=n -", 2,3,...; 1 • - (6•;

II __ [r-n-

L = 1.2,..; n >

For the special case in which Q= 0, it is clear that 3t

and the validity of Eq. (67) follows directly fro=- the identity

Eq. (63)."t In general, for arbitrary real 8, it --ust be established

that

m i n + r j( ,
or n M- ,

n=1 =l r - n!

or that

m A-i (n + rz)

WI]

n=l ]I (r - n)

The prime used in the product notation (r-n) signifies that

r ranges only over zhe integers 1,2,...,n-l,a-l,..., so that the
result is never zero.

tt

See Ref. 1, p. 20, Eq. %614).



z,~ e ea:b z s .'efined as

z = (71)

(5))

(X--'7 -x +

and the Ileft side of Eq. (7iý) bec--es

__________z I-(75)

r~n=

che de-:,)--iatr of (-D* (7--)ca *-e (77)es a

sc that Eqs. (6),(7), and (75) can be formuated as
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n n - k+ n (k) k n-k (78)

TV-1 n-I k-O

From this last relation, it is clear that Eq. (69) can be

"established as an identity if it can be verified that

.LIL.... ks-n (n)¶ 5 (k) k rn-k I~rn-mL (_ \' ' (79)
.: ) (-l)• s~k n z =(-l),l(9

k=O n-l

or, equivalently, that

S ,- (m A-
' (-l)n •nk z - 1 = 0 m = 1,2,... (80)

k-C) (!1-

Since Eq. (80) is a polynomial of degre, m in z, it follows from the

fundamental theorem of algebra(9) that Eq. (80) has only m values of

z which makc the left side equal to zero. In order for Eq. (80) to

! r
be generally valid, therefore, each coefficient of z , r = -,2,...,m,

must be zero and the coefficient of z0 must be unity (since S (k)/M!.
M

is also nonzero for k - 1,2,...,m; m = 1,2,...). Consequently, the

proof of Eq. (69) rests on demonstrating that

(_l),- k S (m-k) mk

M! '(_)n n= (81)

n-l

or, since S(0) O, S(M)= 1, and S(k) 0, k - 1,2,... ,M, m = 1,2,...,
m m m

that
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0 k = 1,2,...,m-1m m

_ (m) nm-k = (l)n n) nm-k = (82)

n=l n=-0

(-I)m ml k = 0

In order to verify Eq. (82), the following identity is utilized:

m
Smf(x) = (_l)m-n (n f(x+n) (83)

n=o

where A denotes the forward difference operator. With the choice

f(x) = x Mk k = 0,1,...,m; m = 1,2,... (84)

Eq. (83) becomes

rn

bm xm-k = (-)m-n (m)(x+n)r-k (85)

n=0

It is possible, now, to conclude the demonstration by applying to

Eq. (85) the fundamental theorem of difference calculus: (10)

th
The n difference of a polynomial of degree n

y(x) = a. xi a n 0

j=0

is a constant, a n! h, and the (n+l) th difference is0

equal to zero. The first forward difference is defined

as Ay(x) y(x+h) -y(x); the second forward difference,

as A 2y(x) = Ay(x+h) - Ay(x); etc., and h is a constant.

Accordingly, for k = 1,2.... ,r-i

m m-k
a x = 0 k = 1,2,... ,m-1 (86)

tSee Ref. 8, p. 823.
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so that Eq. (85) becomes

m

(.1 mn i) (x+n) rnkk 1,2,...,rn-1 (87)

n=0

For the particular choice x = 0, Eq. (87) becomes

m

inn

n=O

which verifies Eq. (82) or Eq. (81) for all k = 1,2,...,m except

k -0 . With k = 0, h = 1, Eq. (85) may be simplified through the

finite difference theorem to

MSm -X (_,:) ,x m °
6rm x M. Z 1  n (i) (x+n)i (89)

n=0

or, with x = 0
m

n-0

Since this last relation is recognized as Fq. (82) with k = 0, Eq. (82)

and, therefore, Eq. (69) are established as identities for m = 1,2,...;

k = 0,1,...,m. From Eqs. (68) and (69), it is clear that the coef-

ficients X satisfy the check-sum expression
mn

ZI krn-- (-.l) o~l•/ rn= 1,2,... (91)

n= 1

Two additional derivations simplify the calculation of the initial

values of the basis elements X (t) and U (w), as well as the evaluation

of the integrals of these functions. In order to get these relations,

it is necessary to verify the identity
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M

rnn (92)

n= I

or, using the definition of z in Eq. (71), to show that
m

z(l-m) mnc
mn (93)

r n

n= I

By referring to Eq. (78), it is seen that Eq. (93) can be

written as

m(J )Mi. 1 )k+n )(k) nk- zn-k = 1
z m-1 mi (-I) C m n z 1(4

n=l k=O

or, reoriering the summation,

m m
Z M (ml) . (_l)n m7) nk-I rm-k nm-1 (95)

k=O n=l

Since S(0) - 0, it is necessary to show that
m

ZS (k)M m-ri)! jnn' (-l)n ( )nk- 1 zm-k - zrm-1 (96)

k=l n-

or, applying again the fundamental theorem of algebra, that

m
S(1)m (-l) mm-) (_,)n (m=I(97)

rn (rn-i)! I(
n=l

and, since S(k) 0 0, k = 1,2,... ,m, thatm

(-I) n ()n = 0 k = 2,3,... ,m (98)

n=1
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Equation (98) follows immediately from the finite difference

relation given in Eq. (83):

m

n=O
n-0)

If f(x) is chosen as

f(x) - x k1(99)

then Eq. (83) states that

m

Am xk'l = - (-)m-n (m) (x+n)k- (100)

n=O

The previously cited theorem of diffezence calculus provides the

relation

m k-i
mk = 0 k =2,3,...,m (101)

Consequently, Eq. (100) becomes

m
m-n (m) (x + n)k-I = 0 k = 2,3,... ,m (102)

n=0

With the choice x = 0, this simplifies to

m
n (m)nlkl = 0 k = 2,3,...,m (103)

n-nn=0

or, since the first term of the summand is zero

m

n = 0 k - 2,3,...,m (104)
nx 1

This last equation is recognized as Eq. (98).

It remains to demonstrate the validity of Eq. (97). Since

S( 1)is given bym
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sM (-1) (r-i)! m 1,2,... (105)M

Eq. (97) becomes

m

n= 1

or, adding and subtracting the term for n = 0,

(.l)(- (Mn) = 0 m = 1,2,... (107)

n=O

But Eq. (107) follows directly from the binomial expansion

m

(I + X)m = X m = 1,2,... (108)

n=0

Thus, with x = -1, Eq. (108) yields

m

n=O

Since this is precisely Eq. (107), Eq. (97) is verified, and thereby,

the identity Eq. (92). Finally, utilizing Eqs. (92) and (68), it

follows that

ýE!r - •mn 1(10

La+ J n (110)

n= 1

The identities given by Eqs. (91) and (110) can be used to evaluate

X (0), UO) 0, Xm(t) dt, and f Um(w) dw. From Eqs. (18) and (25),
0 OD

X (t) becomes

i

See Ref. 8, p. 824.
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m

X (t) '• mn F2T(t) m = 1,2,... (111)

n= 1

]i This can also be erpressed, by Eq. (3) for cn(t), as

m
• • -~nC•,-jo)t .. l2

X (t) = ,iTT n e- m 1,2,...; t > 0 (112)
.M 

mn
n= 1

Hence, Xm(0) becomes

m

m mnXm(CO)=:• I•m -)•1. m = 1,2,... (113)

n= 1

Similarly, using Eqs. (4) and (21), Ur(w) can be written as

m

U~w)= ~~mn[no+ ]m =1,2,...;. w < (114)Um~w "ran ncy+ j(w- nT)

n=1

so that

U 1 ._n m 1,2,... (115)

n= 1

or, in view of Eq. (110)

1]m(0) ( + m 1,2,... (116)
m = I / M T T ( a j o ) m

The areas under U (w) and X (t) can be ascertained in a similar
mm

fashion. From Eq. (23)

mfjW
_. j Um(W) et dw = X (t) Z Xmn %0n(t)2TT C m mn

"n=i

If cpn(t) is substituted in Eq. (23), it follows that
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m rn
0 U (w) dw = X P (O0) = m (117)

n=1 n= 1

Consequently, replacing the sum of the Am with the right side ofmn

Eq. (91), the area under U (w) becomes
m

CDn

JO Urn(w) dw = (-I)l- 1 4rma m = 1,2,... (118)

Since Eq. (23) relates U (w) and X (t) as Fourier transform pairs,in m

it is evident that

S - 1j)t -JWt
Um(W) = Xm(t) e dt = X(t) dt (119)

Using Eqs. (21) and (4) for U (w) and .n(w), Eq. (ý19) becomes

m

Sm(t) e dt = mn Ln + j(w-nS) (120)

n= 1

Setting w 0 in this last equation yields
m

SX (t) dt = ji m. (121)

0o m jn(1)
n= 1

and, utilizing the identity Eq. (110)

0 X (t) dt 7 •qtL.m m 1,2,... (122)
o in mm ''"m

The important identities derived in this section are summarized

in Table 2.
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VI. REPRESENTATIONS WITH X (t) AND U (w)m m

The preceding sections have focused on generating che complete

orthonormal exponential sums X m(t) and Y (t) and the rational functions
m m

U (w) and V (w). Because the corresponding elements of these sets
m m

are related as Fourier transform pairs, it is a simple matter to

determine simultaneously the least-mean-squared-error representations

2
of prescribed functions g(t) C L (O,w) by X (t) or Y (t), and of

functions h(w) C L 2(-o•,o) by Um (w) or V (w). The solution of themm

optimum expansion coefficients follows the usual treatment found in

the literature on generalized Fourier analysis. Certain noteworthy

simplifications evolve, however, because of the special nature of the

orthonormal functions developed in this Memorandum.

When a specified function g(x) C L 2(O,c) is to be approximated

in a least-integrated-squared-error sense by orthonormal elements

(8e(x)W complete in L2 (O,(), it is necessary to determine the coef-

ficients a in the Mth partial sum

M

g(x) AV I am 0m(x) E 9(x) x > 0 (123)
in~l

2
so that the L -norm

jjg(x) -(x)II2 1 9g(x) - ^(x) 2 dx (124)

is minimized. The necessary condition for achieving an extremum of

Eq. (124) is that( 1 2 )



0 •~)- A•(x) 2 = o r 1,2,.. ,v (i25)

• a
r

or, subatiruting E;. (1231 fer g(x) in Eq. (125), that

m 'a
-g(x) - gix) a W(x) - g (x)

I M L am f 'x)

m I4
+ a a e (x) (Y dx r = 2.

m n m n
•i1 n=1

Upon differentiating Eq. (126) and utilizing the corthoncr=a!ity of

the e (x), Eq. (126) redices to

- g~x) 8r(X)dx - g (x) Gr(x)dx + a + a= (i2)

Th.i- last equatizn in a is obviously satisfied by

r = g(x) i (x) dx r= ,2..., (12•r 0r""

The faLt that this value of a leadk to the desired minimization ofr

the norm iig(x) - (x);j can be seen from the sufficiency -nditio 3

S0 r = 1,2,... ,M (129)
;3 a r-

r

For the particular set of fur.ctions R (t) given by Eq. (i8), it

is clear from Eq. (128) that a least-squared-error representation2I
A(t) of a function g't) C L 2(O,m) of the form

m

g(t) OT am X(t) = A(t) 0 < t < (130)
Lml



7--9
re•-.,.:.-es :.,: -•--- a •-e se~e ".e. a :.: ..:. :i• -

a = g(:) I (:), =

7.e iegrals d ::ese - are den-. ifia---e as z e La-; a.c

- ( -.' *- ,,::e -:÷qe-.

S = :(Zt-'ý ) n- , , •

Se E(:' •: = S -- . :

s~s .s-=s

C z=ns ee.'y, L e n IeZge of :he L-aIace :ra:n.sfz=-, C(s ), f± -(:j a:

the M c=-Zlex eq:e.c:es s : = , . ,, 's s~f'c:e=

:3 dezer,--n •_-e exansU'.. zoeffrzze-:s a o f . :3:. 1:3 . :an he:-e.',r

:he op=i::z integrated-sczared-error a~r 'x-:i- - - 1(..) . :.e :r•-

scrlhe• fu tctzn g(t) on z > C. A::errna:i--:_v,:his avgori:- _ ag

:epresentr:nz (t) :- :i-- s cf X_ (:) alsc provides a :ehniqu

obtaining an approxi-:te nuerical inverse g(t) :o the prescribed

Laplace lransforn-, G(s), of an unknown. function. g(-).

Through Eqs. (130)-(132) , the approx1mant g(t) of g(r) can be

expressed as

M .:i

S• ~-n(O-jw)
g =C(s) t > 0 (133)

cn=1 TI--l
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As a co-sequence af the Fourier trar.sforn relationship between corres-

pondi4ng elewents I (t) and Ut (g). a least-integrated-suatred-error

- 2
representation h(a4 to a specifted fun.-ction h(a) c L (-m.,) can also

be readily computed. If h(a) is the Fourier transforn of g(t) and if

h(a) is defined as

h~s) a b U (a) so h(as(lZi

with the coefficients b sclected to yield

nm h(-c) ) 1,2,...,.. (135)

then, following the sclution for the Fourier coefficients a , the b

are detetn-i-ed as

r " *
b= d

But by Parseval's theore- and the previouzsly established relation

~X~t~iU Z-!i(),i fzaows that

1 ( = J g(t) 't) dt (137)

s2 that substitution of Eqs. (131) and (135) in Eq. (137) yields the

numerical tquivalence

b = 42n a = 1,2,... ,M (i38)

This r-sult and another application cf Parsevdl's theorew can

provide a link between the approximation errors incurred in the
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domains 91 (t)j, g(t) -L (0.,). and IV (a)], h(s) L (-=..). If

c denotes the error in the representation g(t) - g(t); i-e.,

2 - ,2
-in g(t) g(r) t dt (13ý)

then f.rom Eq- (130) for g(t), • can be written as

C S: g(t r) g() ( a X1(t) - g(t) a X1()

__ :*I -[

+ a a X (z) X*(t) dtr7- = r, 1 0

or, taking account zf Z;. (131) for the opti-=- a and Eq. (26) for

the crthonor--alit- of the X(t)

r ,* * a*g(:) d - -a a - a - )a a (141)

so that

€ gkt) 2 2- 2

In a similar fashion, the error, 4, in the representation h(x)

of h((w) z L 2(--,,) c.- be derived from Eqs. (134)-136) and (22) as

M
2 2 ~-2L= min ih(w) -;(w) 2 h() I- (

{b = - Ib- (1'43)

From the Fourier transform relation of g(t) to h(w), Parseval's

theorem guarantees that
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2 1 2

g(t) 2 1 h(i) (l4)

Consequently, c and CC are as

M,= n g(t) 2 2 a 2 = (145)

2=1

Since a is nonnegative, Eq. (145) indicates that both c and•

are monotonically nonincrea~ing as M is increased. Theref-ore, for

an arbitrarily prescribed approxi-ation error c or X can be

iteratively ascertained. Mareaver, according :o Eqs. (131% and (136)

for a and b_, M can be determined without reco-puting an-. of the

previously calculated coefficients a or b , = ,,. •-i

The key results of this secticn are recapitulated in Table 3.

In the table, the inner product notation (x(;),y()) denotes
..r 2  *
2 x() y (.) d;, where the appropriate values of r 1 and r 2 are

ri
obvious from the context.
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VII. COMPUTATIONAL ASPECTS OF ORTHONORMAL EXPANSIONS IN U (w) and X (t)
m in

The computational labor in evaluating the coefficients X from
mn

Eq. (45) can be substanzially reduced by employing a recursive pro-

cedure. In order to develop such a recursion scheme, the coefficients

A must be expressed in terms of previously determined XmAn.t

This can be accomplished by using Eq. (45).

With m replaced by mal in Eq. (45), the coefficient X becomes

r aml 
,n

_ _r )= 1,2,...
fI [r-n] :n m+ I

r=l

)'a~ln=•(146)

I 0 a = 1,2,...

n >n m + 1

Since Xmn is also determined by Eq. (45), the ratio of Am+l,n to

can be formed as

/2 (l-z) M= 1
A [ n= 1

m01.n = (147)

m,n m m

fl'rz (r-n)

[v i 4I an = 2,3,...
mre- I, m-1 1 ": n I: m

(r-1 ) (-rl z

tin order to avoid confusion, a comma is used to separate the

subscripts m and n in the coefficients X • Accordingly, X isth nth"n

understood to signify A ,n- tne n coefficient of the m basis
function,
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Consequently,

1 n(a-JB) + m(mi-l) (148)
m+l-,n V. (mi-l-n) (a-JO) m1,n S. n ! m

Since X is zero for n > m, and since division by zero is invalid,
mn

the above expression for Xl in terms of the preceding X. is

limited to the range 1 :G n :9 m. In order tc determine the remaining

element X 1 1, the identity given by Eq. (110) can be used in the

following way

Fia-- in = 1,2,... (110)

n=l

With m replaced by e+1, Eq. (110) becomes

marl .

I___ n (149)

n= 1

If the term n = m+l is individually sumed, Eq. (149) gives

inl +ii I AFRi
L. n mi-i 'rmil,mi1 n*)r La-.(10

so that

= -1)a 0+~n = 1,2,... (151)"rr-l,m+l = ;iTi-: a-s n M-~
n= 1

With this last relation and Eq. (148), it is evident that [he coef-

ficients X can be recursively evaluated by using the initial values
mn

given in Eq. (45), namely

in =
11 =ll 7 n,, I

(152)

,l=0 n > 1
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and by ernployiig the expressions

I n_•T(-tB) + m(Cs+-O) m 1,2,...

I 4m (n+*-n) (o-jO) m,n 1 n I m

m

(m+ 1) i a M 1 Xfl~ik m 1,2,... (153)
u+ln I k n m + 1

k=l

im 1,2,...

n >m+ 1

The check-sum relation Eq. (67) still applies and can be used to

detect errors in the evaluation of each new raw of basis coefficients

=x
Xm~l,n (n = 1,2,..., m+l; m = 1,2,...) generated from the previously

computed Xre,n"

It is also possible to provide a recursion formula for the
efficient computation of the orthonormal elements (X m(t)) and (U m(W).

From Eqs. (3) 3nd (18), X m(t) can be expressed as the sum of

exponcntials

m

X (t) = X efl(Ojo)t m = 1,2,... (154)

n= I

The fact that this sum involves integrally related decay factors can

be exploited to evaluate X (t) recursively for arbitrary values of

t > 0. This is accomplished by first defining the associated quantities

X asM~r

X X a r 1 (155)m,l nun

with

X 0 (156)
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and with X• ,l n / , given by the iterative relation Eq. (153). With

these definitions, it is clear that ri iterations of the expression

X =e X + X r 1,2,...,m (157)
m,r+l m,r -n,m-r m = 1,2,...

and final multiplication by 42nT yieids the m"' basis function

x (t) =J•7 x (158)
m mi,.m+t

Thus, for arbitrary t, X (t) can be calculated with only one evalua-
tio -f additions.

tion of e with m-1 muliLipiLLations, and with m-I additions.

This is an imporrant economy in either manual or machine computation

time as it results in only one exponential tLble look-up or one

exponential subroutine entry.

By folowing the calzulation of X m(t), Um (w) can also be itera-

tivelv obtained for any value of w. From the rational function form,

Eq. (41), of U (w), it follows that

m
nl[no-j (Lo-no)]

U. (W) m+. m = 1,2 .... (159)

' [nO+j (w-no)]
n= I

Consequently,

Ul( E (m*)o + i~w-(m+1 U (W) m = 1,2,... (160)

with

U (161)
IlW =V r a + j (W-)
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n

Once U (w) is calculated for an arbitrary value of w, then D2(w),

w),..., foliow by successive multiplications by /2(a-JU+jO)/(2o+jw-2jO),

43/2 (20-jt-2jO)/(3a+jw-3jO), and so forth.

It has already been noted that computation of the expansion

coefficients for a least-integreted-squared-error representation of

a prescribed g(t) requires knowledge of the Laplace transform G(s n)

nn
of g(t) at the M complex frequen-:ies s = n(a4-jo), n=

Thus, evaluation of the coefficients a in Eq. (131) entails izitegrals
m

of the type

Lnfg(t)- G(s) = g(t) e-n(~j0) dt n 1,2,... ,M (162)

When the Laplace transform of g(t) is not availible, it can be approxi-

mately determined by a variety of quadrature schemes.( 1 5 )

If the linear functionals L are approximated by the quadrature
n

formula
M

nL n wk g( n = 1,2,...,M (163)

k=1

then an appropriate criterion for obtaining the weights Wk) k = 1,2,...,M

for assigned sample points tlt 2 1 .. ttM is ýthat Ln be exact for g(t) = 1,

-(O+)t, e-2(o+jo)t e-(M-l)(o4-j)t This criterion translates

into the system of equations

{I
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k=f 1
M 

We+ dt 
t

I k (n+4-1)(U+j 0)
k= 1

(164)

M wke -o e ~1(j)dt (M-1) Oj0

k= 1 =(+M1(~

It is convenient to employ the following matrix notations in the

above equations:

V 1

w 2

W (165)

w M

111

e e .. e

V. I (166)

Le -M1OjOt e -(-)GJ~2.. e -MI(+OtJ
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n(oa4.B)

1

(n+l) (o+jp)

(167)

L (n+i-- 1) (o+J o)

With these matrý, definitions, the system of equatouns in Eq. (164)

can be written as

V w m (168)

and the symbolic solution for the weights becomes

-- 1w = V m (169)

V is identifiable as the Vandermonde matrix and V-1 as its

inverse..t Since a must be nonzero and positive, and since the sample

points ti, i f 1,2,...,M are distinct, V is nonsingulart and has an

inverse, V"1 Once V-1 is evaluated, the solut-*on for the quadrature

weights can be obtained from Eq. (169) and the expansicn coefficients

a can be finally computed.m

Numerous expressions are available for determining the elements

of the inverse Vandermonde matrix.( 1 6 -1s With a judicious choico

f
See Ref. 10, p. 92.

See Ref. 10, p. 93.
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of the sampling points, ti, the inverse V-1 can be computed readily

either from greatly simplified formulas t or written directly from

tables of Universal matrices. (19)t An application of Universal

matr'ses to a quadrature scheme similar to Eq. (163) can be found in

Ref. 1iu. Because of the direct analogy to the present situation (with

a replaced by (a+jo)), the derivations will not be repeated here. By

using the Univereal matrices and the special sampling points ti, it

is possible to derive the weights w from a simple computation of the

-1
moment vector m and a premultiplication by the known matrix V The

expansion Loefficients a then folow irom Eqs. (163) and (131).m

Since a and b are related through Eq. (138), a similar development
m m

can be made for efficiently determining the coefficients b in the

approximation h(w) to a prescribed function h(w).

See Ref. 16, pp. 96-98.
t t
Universal marrices are the inverses of the Vandermonde matrices

with sample points t. = i-n/2, i=C,1,...,n and with n equal to an
integer. I

See Ref. 1, pp. 55-61.
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VIII. SELECTION OF THE COMPLEX DECAY CONSTANT (a-J )

The orthonormal functions X (t) and U (w), the generating coef-

ficients .\n and yn and the expansion coefficients a and b dis-
m m

cussed in Section VII are dependent on a and 0. Except for the

consttaints that a and 0 be real and that a be greater than zero,

the parameters a and A have not yet been specified.

In dttempting to formulate a criterion for selecting a and 0,

several difficulties are imnediately encountered. First, in d~ta

which arise from a sum of exponentially damped sinusoids of unknown

decay and frequency constants, it may not be po3sible to obtain a

unique complex decay value (or pole location) such that -n(a-jo",

n- 1,2,..., matches all the decay factors inherent in some prescribed

data g(t), or that matches all the poles comprised by a given h(w).

Second, there always exist functions g(t) or h(w) for which the

optimum choice of a and p in an M-term representation doeL not remain

best as the approximation complexity is increased.

Another problem in solving for the complex decay constant (a-jo)

occurs when tae given data is impaired by noise or when the subsequent

manipulation of the data is accompanied by round-off errors. The

intractability of this classical problem is widely recognized and has

been amply illustrated even in -ases where four or fewer exponentials

underlie the numerical data.( 20 - 3 0 )t Consequently, the present objec-

tive in solving for a and 0 will not be to recover the original

parameters imbedded in given data. Instead, an approximation to the

SSee Ref. 15, pp. 272-288.
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data will be sought which is best in an integral-square sense with

reapect to the Fourier coefficients a or b . Another more tractablem m

criterion may be necessary to optimize the approximation with respect

to J and 8.

Since a and 8 are subject to only the two aforementioned con-

straints, their choice is essentially arbitrary and can be based on

any criterion of optimality. One obvious criterion is the minimization

over a and $ of the integral-square approximation error € or e given

by Eqs. (142) and (14j). Although this objective would be consistent

with the conditions lead'..g 's the expansion coefficients a and bm,m

it unfortunately results in a nonlinear programming problem requiring

iterative search procedures for its solution.!

A more tractable criterion than least-squares is one which

requires matching the asymptotic approach to zero of the approximant

and prescribed function for large t. More precisely, if g(t) and its

derivative g'(t) exist for some t >> 1 and are nonzero, both a and

can be determined by requiring g(t) and its approximant g(t) to have

the same decay envelope for large t. This condition can be derived

from Eqs. (130), (18), and (3), as follows.

Since

M M m

g(t) W g(t) a X (t) a am I 421 e t > 0 (170)
q=I mul n=l

t
See Ref. 1, p. 40.
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the first derivative of g(t) can be written as

M m

9'(t) '(t(j) I a n X e t >0o (171)
up1 nul

For sufficiently large t and with a > 0, it is clear that only the

terms with the smallest decay factor, -a, predominate in Eqs. (170)

and (M?1). Consequently, Eqs. (170) and (171) can be simplified for

t 1 1 to

M

g(t) o g(t)o 'f2 e "('- t I am Xml t>>1 (172)

m=l
and M

g'(t) * g(t) MO -1 (a-jo) e-(a'j )t a xl t>>l (173)

!I-1
if the ratio of these last two equations is formed, then for a > 0

P OW • -jo g(t) >l 0 (174)
g(t) g(t) g lt)> (74

t>>l t>>l

Hence,

a-R (t) g(t) #0, g'(t) 0 (175a)g(t)
t>>l

and

got IM (175b)
g(t)

S~t>>1

When the prescribed function g(t) is real, the solution for

given by Eq. (175b) indicates that • can be set equal to zero. However,
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this may be an unsati3fLctory choice for 0 if g(t) exhibits an oscil-

latory nature for some values of t. In such r.ases, 0 and a can be

resolved by representing g(t) not as in Eq. (170), but as

M M

g(t) M g(t) IYt) = M cm [Xm(t) + Xm(-t)] (176)

m=l m=l

where the orthonormal functions Y (t) are defined by Eqs. (55), (61)
m"

and (62). lI view of Eq. (62), g(t) becomes

g(t) O t c m I Xmn I e-nalt cos [not + t arg(),mn
cw n-l 1 L T

(177)

+ - j sin[noI-I + arg( Xn)] Itl <w

For t >" 1, the terms for which n = 1 predominate, as before, so that

g(t) /;T e m cIx cos[ot + arg( )

+ j sin[ot + arg(Xm)J % t>>l (178)

with

Mf
g'(t) ft -a g(t) + / e- MmX1I{- sin[ot + arg(Xml)]

m=-I

+ jo cos[pt + arg(ml)]} t>>l (179)

and
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'(t) ow -a g (t) + e" up,-I Cm m 14sinEt f arg(h 1l)]

up-i

H

cJ cos[t + argo, ml)] - 1/17 et 114 c' os[Ot {arC(X1)]
r,,1

+ j sin[Ot + arg(Al)]} t>>l (180)

or

g'(t) • -2ag'(t) - (a 22 ) g(t) t..>l (181)

Similarly,

gM(t) o - 2a g"%t) - (a o2 ) g'(t) t>>l (182)

The preceding two equations relate the unknowns a and 0 to the given

function gt) and ýIts derivatives at some large value of t. Equation

2(182) can be solved for 0 to yield

2 _g(t) + 2ag"(t) + a 2g'(t),,, 9 1t)It> (183)
lt>>l

2When this expression for 2 is substituted into Eq. (181), the follow-

ing relation for a is obtained

a O 2()&t&.t..2 9 '(t) #IjFit0g"(0t), t (184)
2[g' 2 (t)-g(t)g"(t)] t>l

Thus, 0 is also explicitly related to g(t) and its derivatives for

some large value uf t as
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Ra WC it( -R '(t)g"(t)

S'(t) gt) - g(t)g"(t)

R •W2 (t)•2Et)+y"2 (t)x 20-2R•(t)g '(t)S"(t)Rmt (wb)

4[g 1(t)+g2 (t)g" 2 (t)-2g ' 2 (t)g(t)g"(t) ]

g9 (t) ý 0, g '(t) ý +R( C)g "(t), t>>l

Several qualifications are noteworthy regarding these equations

for a and 0. It is clear that Eqs. (175), or Eqs. (184) and (185),

Pcovide suitable values of (a-jo) when the prescribed g(t) i3 given

as a long-time record. When g(t) is a transient or pulse-type function,

or when the complete time history of g(t) ie unknown, tae asymptotic

properties of g(t) are not available for estimating a and 0 by the

aforementioned equations. For these pulsatile functions, it is

necessary to resort to more elaborate techniques for obtaining (a-jO).

One procedure for obtaining a and 0 relies on the discrete version

of Prony's exponential approximation methodýt In essence, an applica-

tion of the ! ony algorithm(31) enables a selection of (o-jo) based on

many samples of g(t), rather than on a match of only the asymptotic

values of g(t) and its derivatives for large t. Other versions of

(32-33)
* Prony's scheme which are available can also be used to select

a and 0. Depending on the procedure chosen, the approxinmant g(t)

satisfies in a least-squares sense a finite difference or differential

equation involving the s..npled or continuous ordinates of the specified

g(t). Since all these approaches are conceptually similar, and since

See Ref. 1, pp. 42-51.
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the discrete version of Prony's method has been detailed in Ref. 1

for the case in which 0 = 0, the derivations will not be repeated

here with 0 • 0. It will suffice to state Lhat the derivations in

Ref. 1 apply to the condition • • 0 considered in this Memorandum

by merely substituting (a-jo) for a in Eqs. (127)-(154) of Ref. 1.

Though no mention has yet been made of the associated problem

of selecting a and 0 for approximations of functions h(w) C L

by sums of the orthonormal elements U (w), it turns out that all them

techniques discussed so far are applicable, albeit indirectly and

with additional computational labor. Since the approximants h(w)

and g(t) are Fourier transform pairs, the Fourier transform can be

taken of a graphically or analytically specified h(w) to produce a

g(t) or samples of g(t) at S points t - 0,1,...,S-l! In turn, these

ordinates of g(t) can be utilized in all of the Prony schemes cited

earlier, and a choice of (a-jO) can again be made based on g(t)'s

satisfying a difference or differential equation.

t
See Ref. 30, pp. 67-75.
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IX. NUMERICAL EXAMPLES AND APPLICATIONS TO FILTER DESIGN

In the introduction, several important practical app]ications

are enumerated for the orthonormal sets XM(t), Ym (t), Urn(w), and

V (w). In order to clarify the use of the algorithms developed inm

this Memorandum, two filter design problems will be illustrated in

this section.

The first example pertains to an approximation problem in network

synthesis.( 34 ) It requires finding a physically realizable transfer

function for a finite, lumped-element, passive, linear network such

that the network's impulse response is a replica of the waveform

depicted in Fig. 1. The approximating response must be close enough

to the prescribed response that the mean-square error between them

-2is less than X 10 over the time interval (0,10). In quantitative

_rms, the prescribed transient resronse is given as

0 t<0

2t 0 S t • 0.5

g(t) -2(t-l) 0.5 S t : 0.95 (186)

ae -2.42377t t > 0.95

and it is necessary to find ak and N for the appri-ximat g(t) such

tha t

NN k

g(t)- XI kXk(t)= W ak i km e'm('JO)t ow g(t) (187)

kwi k-I W=1

and
1 !0 22

N1J Ig(m)-g(t)I dt 6 io2 (188)
N~ CO~j
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In order to meet this design specification, the coefficients ak,

k - 1,2,..., N must be computed for some choice of c, 0, and N. In so

doing it is convenient to recall that the expansiou coefficients ak

are independent of N. Thus, N can be selected arbitrarily, eN can be

evaluated and compared with 5, and N can be iteratively adjusted to

be smaller or larger depending on whether gN < 6 or sN > 6. In either

case, the a k are determined from Eq. (131) as

kk

ak = g(t) X(c) dti 7  y *k iOgt ~(O*JB)t dt (189)

k = 1,2,...,N

Thus, evaluation of all he ak entails integrating the N quantities

"G J j e-'(+j0) dt m= 1,2,...,N (190)
0

0. 0.95
C = t F dt + 2 (l-t) e-M(G+jO)t dt

2ý f .5

(191)

- -e(Wmj +.42377)t dtf e-m+d

0.95
0 4-.5m(o+jo ].5~+O

S2( 1+ -4e2 + [2 - l('+J)m] e-.95m('+j) + 21
MI (a-jO) J(192)

m=

In order to determine the moments G (the sampled Laplace trans-
m

form of g(t)) by this last relation, a selection of a and 0 is

necessary. Since g(t) is a pulse-like function with an exponential
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tail and no odcillatory character, Eq. (175) is appropriate for deter-

mining a and 0. Accordingly

[ ) , 2. 4 2 3 7 7T-2.42377ta -Re ] f ReL [ "2437 (193)
Lg(t) i•>1t>>l

or

aow 2.42377 > 0 (194)

and [ 1

IM (t) 0 0 (195)

t
With these choices for a and •, the first nine coefficients ak are

found -From EqF. (192), (189), and the tabulated X of Appendix A

as

a= 0.3738 + j 0. a -01227 + j 0.

a2 =0.3957 + j 0. a6 = -0.412 + j 0.

a3 = 0.0694- j 0. a= 0.0284 + j 0. (196)

a= -0.1164 + j 0. a8 = 0.0441 + j 0.

a = C0.3227 + j C.

These valies for ak can be inse'rted in Eq. (187) along with the

tabulated X tu 'ind g(t) for t > 0. When this is done, the rimsmn

error over the interval (0,10) can be computea from Eq. (188) to

give

.2

9 9 0.2 x 10 f 2 N = 9 (197)

The values of ak iisted it. Eq. (196) have been roune'•d to four

significant digits.
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-2
Since c8 = 0.3 x 10 > 6, it is clear that the solution for N = 9,

a= 2.42377, [ = 0, satisfies the design specification. For these

values of N, a, and 0, graphs of g(t) and g(t) can be compared (see

Figs. 2 and 3).

Finally, since the Laplace transform of X (t) is' m

m,fXm(t) e-st d

0n= 1

asapoia mg~d ___ H s) dt• j (i98a)

the approximating realizable network transfer function can be written

! as

N m
^a OD

H(s) T •mn s+n(a-jP) ow H s) =- g(t) e-st dt (198b)

Sm=l n=l

Thus, with a equal to a real number and • equal to zero (as in the

present example) H(s), the network approximant, can be implemented

with either RC or RL eliments tn give the impulse response g(t) " g(t).

The second numerical example deals with a problem of optimal

filtering. In processing signals impaired by additive noise, it is

possible to accomplish smoothing and prediction by constructing an

apprpriae fi (35)
appropriate filter. Usually this requires approximating the

spectral den6iLies of the signal and random noise process by rational

functions. This procedure in turn permits the analytically optimum

filter to be approximated in the form of a lineat. lumped-constant

network. Since the power spectral density is a rational function of

frequency for i signal whose correlation function is a sum of
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exponentials, it is possible to use advdntageously the sets [XM(t)M

and fYm(t)] in the approximation of empitical correlation data.

A commonly observed autocorrelation function for a stationary

random pr _... s the exponentially damped cosine(36)

f(qr) e2 cos = e ITI > 0 (199)

Though the best approximant of I(T) of exponential form is clearly

Y(r) itself, it is instructive to see how efficiently this exponen-

tially damped cosinusoid can be approximated in an integral-square

sense by the orthonormal elements X (T). Since Y(T) is defined overS~m

the doubly infinite interval, ITI < o, and since the X ((T) are non-

zero only over T > 0, it is necessary to represent 1(T) over (-ca)

as

A N

Y(r) ow T = X aX. (T) 0 - T < c (200)

k=l

and
N

,r) • 1.(T) = ( bk Xk(T) -=< T 5 0 (201)
k= 1k=l

It is evident from Eq. (199) that 1(T) is an even function of T;

i.e.,

(T() = Y(-Tr) (202)

Hence
AA

T(T) = y_(-T) (203)

and

ak b k f 1,2,...,N (204)
kk
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Consequently, the moments G for Y(T) can be .lated simultaneously
m

to ak and bk through Eqs. (189), (190), and (204) as

G= f e-(+m+ 2 )T cos 17 dT (205)

m(a-+] @) + 2
[m(a+j-)+2] 2 + n=

In terms of these G the expansion coefficients for ; (T') and
m+

T_ (r) become

k

a km G = bk k = 1,2,...,N (206)

where the are tabulated in Appendix A as rational functions oi

a and •.

In order to complete the approximation Y(Tr) • T(T"), a selection

of the parameters a and I is necessary. This will enable the evalua-

tion of G ak, and b of Eqs. (205) and (206) and, thereby, of
m k' k

Y+(T) and T (T) in Eqs. (200) and (201). Since Y(T) is given as

a real, oscillatory, exponentially decaying function, Eqs. (3.83)-(185)

can be used to obtain a and 0, with 0 not necessarily zero (as would

be the case if Eq. (175) were used). Accordingly, the first three

derivatives of T(r) for T > 0 become

t'(T) -e 2  [2 cos 1r + n sin -IT] (207)

'T"(T) = e" [(4-2) cos TT + 4T7 sin rr7] (208)

T''(r) = e" [(-8+6r2) coS g7 + (Tr2-12) Ty sin YT] (209)
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Putting these values it. Eq. (184) for a results in

6 2 -4,.

V 16T2 e-4,r =2 (210)
8 772 e 4  >>l

Similarly, after simplifying the trigonometric terms generated

from substituting Eqs. (207)-(210) in Eq. (184) for 2 2 becomes
i2e2 r -2r 2-2 -2"

2 -2(4-31 2) e cos OTr + Or7 -12) 7r e sin ,T" +S" " -2y"- •
-2 e coso 'ri - r e Tin YT

4(4-72 ) e"2• coo iTr + 16 TT e sin nT• + ... (211)

-2 1. -2,. E 7
e os 2- C3 r - 4T1 e- 2,Ein TTT 1.>

or

2 Tt2 __- __co _____r sn IT 22 2 2(cos + sint)= T (212)
-2,2 e (cos 'r + TT sin r) r>r >

Consequently, the principal root of Eq. (212) gives

it (213)

For Y(T) prescribed in Eq. (199), the values ao 2 and # TT

just derived have special intuitive appeal. When these values are

used, and when a mean-square-error tolerance, Eq. (188), of

6 - 0.9 x 10-2 is selected, it is necessary to compute twelve expan-

sion coefficients. Thus, with N = 12, a - 2, and * = T, the ak of

Eq. (189) become

k• im~b 12...
""G- = b k - 1,2. ,N (214)

k F l
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where now

G.= f0 ?() em(•J)T dr = fo ecom(j•)±2] Co. r~T dT (215)

or

G = m(o÷B) + 2 m M 1,2,...,N (216)m [m(o+jo)+2]2 + T2

Thus, the expansion coefficients, rounded to four significant digits,t

are

a= 0.3221 - j 0.1132 a = -0.0316 + j 0.0488 a9= 0.0347 - j 0.0048

a2 a -0.0967 + j 0.0452 a6 = 0.0500 - j 0.0014 a10 = -0.0197 - j 0.0249
(217)

a3 = 0.0798 + j 0.0281 a7 = -0.0249 - j 0.0361 a = -0.0107 + j 0.0270

a 4 w -0.0242 - J 0.0648 a8 8 -0.0154 + j 0.0358 a 1 2 = 0.0265 - j 0.0037

with

612 = 0.895 x 10-2 < 6 (218)

and

€11 = 0.934 x 10-2 > 6 (219)

The corresponding approximation Y(T) and the given autocorrelation

function Y(fr) are compared in Figs. 4-7.

Finally, since the Wiener-Khintchine Theorem relates the

autocorrelation function and spectral density as Fourier transform

pairs, the power density spectrum associated with the approximation

12

) + a.k Xk() O YQr) ,,, 0 (220)

kal

Sixteen significant digits were computed in all the calculations
of ak since the AMn may become large for certain values of a, p, and m.
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12

Y(T) - ak Xk(-T) T(T) T 9 0 (221)

k= 1

is

r() + (T) e-'' dT + e de T (222)

0 -m

mj[ (T) e-j IT dT =•t•

- U

Thus, by changing the variable in the second integral of Eq. (222) and

by noting Eq. (221), Eq. (222) becomes

12

Ia(W) MW(a eX dT e- i e+ X' dT} (223)
•(O k Xk(T a+ Xk(

k=l

Since X k(T) and Uk (w) are r-lated as Fourier trL..sforms (to within

a scale factor; see Eq. (23)), Eq. (223) crA be written as

12

§(W) O Z TT ak [Um(W) + U(W)] (224)

k=l

or, in view of Eqs. (21) and (4), as

12 k

12 k no Re[Xn] + (w-ný) im[Ekn]1
f(w) ow 2 r2,,a 2 2 j'- (w) (225)

k=1 nl kL (na) + (w-no)

Thus, for any value of N, once the ak are determined for the auto-

correlation function Y(T), the approximating spectral density can

be written by inspection. In view of Eq. (145), moreover, the

integral-square error between O(w) and f(w) in Eq. (225) is simply

2reN'



-75-

Appendix A

THE ORTHONORMAL BASIS COEFFICIENTS X
ii mn

The rational function of a and 0 given in Eq. (45) can be used

to generate the coefficients Xr."As indicated in Section VII, how-
mfl

ever, there is considerable computational advantage in recursively

evaluating m by Eq. (153). A program for doing this is presented
mnn

in Appendix B.

in order to tabulate the algebraic • obtained by computer, the
mn

following definitions are convenient. From Eq. (45), k is expressedmn

as the proper rational function

Gn=m= 1

m-1

, _i[n(a-jo) + r(a+mj)i = 2,3,...

n = ' 0T• 1i 1 n S m (226)mn• M

(a-j8) (r-n)

r=l

0 = 1,2,...
n >m

If •f a:1d A are aefined as
inn

ijo (227)

and

rn-I mn-i

Ln(a-jo) + r(o+jo)] IL' n(a-T~) + r(o+T,)] r-
A ---- /M - . (a - T1) m m (2281)

nn (r-n) (r-n) m
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where omn is given by Eq. (68), then Xmn can be reexp tessed in terms

of the polynomial An in a and 1t as

nmn

[ nfm= 1

X I/F - A m = 2,3,... (229)n rn-m I 1n Sn :m

0 M 1,2,...
n >m

The quantities A defined by Eq. (228) are shown in Table 4inn

for the range m = 1,2,...,10 and n = 1,2,...,m. For each value of m,

the check-sum relation Eq. (67) holds, thereby verifying the exactness

of the rational Xmn derived from the polynomials Amn.

The A mof Table 4 have been generated by encoding the recursive

relation, Eq. (153), in ALTRAN, a symbolic manipulation language, and

executing the program o- a digital computer.( 38 ) The ALTRAN compiler,

which is required for execution of the program listed in Appendix B,

produces MAP output consisting of transfers to ALPAK, a group of sub-

routines for computirg and simplifying polynomials and certain rational

functions.

Since ALTRAN is not widely available and since it requires large

computer storage for evaluating A for m as high as ten, anothermn

program is given in Appendix C for computing the A mn. The Fortran IV

routine listed in Appendix C computes the integer coefficientd of the

variables a and 0 in the polynomials A n. The computational basis
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for the program is discussed in Appendix D where a series representa-

:ion for A is derived to replace the product form given by Eq. (228).
mn

Finally, in Appendix E a Fortran IV program is preeented which enables

arbitrary functions g(t) C L(O,) to be expanded in terms of the

orthonormal. elements X (t).
tm
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Table 4

THE ASSOCIATED ORTHONORMAL BASIS COEFFICIENTS Ams

A2 1 =2CT

21

=3a + t

2

A 1 --3a + a]]

A32 = -12a + 4a]]

2 2
A33 =lo2 -70T±-]

A = (12 3+ 0a 21 + 2'j 2)/3

A42 = - 3P a3 + 4 aT2 1 + 20 12

A4 3  
60 a3 - 42a f2 + 6 oT2

3 2 2 3
A4 4 = (-105o , 11302a]- 35a1 + 3T1 )/3

A = (304 + 43c 3T+ 20a 212 + 3ao )/6

A5 2 = (-180G4 - 36a 3+ 20 *212 + 4aT3 )/3

A5 3  = 210o,7 - 117a3 ] + 301!3

A5 4 = (-840a 4+ 904c3 ] - 28 + 24a 3 )/3

A55 = (756a - 1i01Oa + 536a2 2 - 101o] 3+ 6ý4 )/6

A61= (90o5 + 189aIt. + 146a 312 + 49a2123 + 6aý4)/15

A6 2  (-315a 5 198a T4+ 8o3] 2 + 22 T23 + 3al 4)/3

A6 3 = 560a5 - 172w4iy - 78 312 + 8a2 3 + 2014
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Table 4--continued

5 4 3 2 2 3 4
(-378005 + 3648o4- 808a1] -32o213 + 12o1])/3

A65 = (3780a5 - 5505o 4 rq+ 26S0O(73 2 - 505 21 3 + 30oTI4 )/3

51c 4 +2 23 4 )5
A6 6 = (-2310a + 4247o47 - 2842c r2 + 852a . 112o14 + 515)/5

f 5 4 2 3 3 2 4 5
A7 1  (6301 + 1.773a 11- 1967o 1] + 10733a3 + 287a 24 + 3001 )/90

A7 2 = (-25200 6 2844o51] - 728a4 2 + 208o 33 + 112a2 4 + 12015 )/15

A73 =(2520a6+ 66c 5 - 609a40 - 81C3]3 + 21a2]4 + 305)/2

A7 4  (-3780006 + 28920o5 T - 784o4 TI, 2 19363 i3 + 56o 21]4 + 240 5 )/9

A7 5 = (41580a6 - 56775o 1]+ 23975a4 2 - 2875a3 3 _ 175a 2 4 + 30c15 )/6

A 76 = (-2772006 + 5096405] - 34104a 4]2 + 10224a 31 3 1344a 24

5
+ 6001] )/5

A 7 7 - (154440a6 _ 343146o5 5+ 293243042 1 - 122023c3T13 + 25703°2 4

-25,47a5 + 901]6 )/90

A = (252007 + 8982c 6] + 13187a5 2 + 1019304 ,3 + 4367a03 4 + 981a2115

+ 90c]6 )/315

"2= (-1134007 - 19098 61]- 10 E8('(5 22 884(74 3 + 1024a3134 + 334c 125

6
+ 300a] )/45

A83 (12600a7 + 5370c 6 2913a5 2 _ 1623a 4 3 57a3 4 + 57 21]5

+ 6o]6 )/5

A8 4 = (-10395007 + 51180a 6 + 19534o - 5912a 4'1- - 1298o 34

108a2 5 + 18ý 6 )/9
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Table 4--continued

-85 (249480o - 29907006 11 + 87075a5 2 + 6725C41 3 3925a 314 + 5o 2T5

6
+ 30a1] )/9

7 6 5 2 4 3 3 4
A8 6 = (-1801800 + 317406a6T• - 196194o51]2 + 49404a41] - 3624o314

282 215 + 30o16 )/5

S(1081080 - 2402022a61 q+ 2052701a5 q - 854161c41]3+ 1799214 334
-17829v 215 + 63001 6)/45

A88 = (-20270250I + 5282325o61] - 5503581a 52 + 2947489a 43 - 867299a 3'4

+ 138319a 215 _ 1086301]6 + 31517 )/315

8 7 6 2 5 3 4 4
Ag= (22680a + 98478o 1 + 181557a TI + 18404651] q+ 110654a4 q

+ 39398v3 T5 + 7677a 216 + 630aT7 )/2520

8 7 6 2 5 3 4 4A92 = (-11340008 - 259020o7] - 218448a612 - 71156a 1] + 4936a4T4
N2 (1340 -259026c 71

+ 9484c3 15 + 2304 T2 1 + 1800117 )/315

= (46200a8 + 40690a 11- 1731a 6T2 _ 108060 51]3 2914a4 T4 + 114a3 T5

2 6 7+ 1172 I,' + lo11 )/10

8 7 392a62 +79a5 q3 _324c44
A94 (-1247400a + 198360o 7 + 43928o +-

- 3896v3 T5 + 64802 6 + 7201 7)/45

A95 = (2243240a8 - 3139470 71q + 2347650 6 2 + 348650c5 T3 - 30850c4 T4

- 11710a3 5 + 405a2 T6 + 9001 7)/36

A96 = (-840840o8 + 13611080 11- 70396806T"2 + 99756a5 13 + 16024c4 T4

3 5 2 6 7
37320'11 - 480cTi + 20311)/5

Aq, (1621620008 - 34949250c77, + 2'3884930a6 2 107597140 53

44 4 3 5 2 6 7
4, 18446540 1 87514a I 8379c 1 + 630011 )/9L0
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Table 4--continued

A98 - (-32432400ar8 + 84517200a713 - 88057296a 6p2 + 47159824a 513

44 35 26 7
138767F4,7 ' + 2213104o3al5 173808a f1+ 5040olj )/315

Ag9 - (6806800a8 - 20355850oy771 + 25047613a6 2 16458298a 5 3

+ 6267166a 44 1402306a 35 + 177733a 2T - 11458o1]7 + 2801 8 )/280

Alo i = (11340a9 + 58311078a '+ 130i697o71q2 + 1646458a 6T3 + 1289454o 514

+ 639606a 415 + 195977o 3 6 + 33858o 217 + 2520o18 )/11340

AIO 2 = (-3118509 - 910755o T8 - 105401D 7 1 - 577963r 63 _ 110949a5 14

+ 34719o4 T5 + 22933a3 T6 + 4527a 2Ti7 + 315o] 8)/630

A9 8 712 6 3 _90a5,4
10 3 (277200a + 382740a 'Ti + 111684a - 70029o61i3 49902a5T4

8058a 4 5 + 1044q 3'6 + 411a 12 7 + 30a 8 )/35

A10  = (-8108100a 9 1829160c 8f + 3350232 7 2 + 1144568a 6 3
54I5O3 2

236976a 5, 74- 123384a 415 - 5528a 3T6 + 2088a2 T7 + 18 0 vT8 )/135

A10 5= (45405369 - 3097962a8• - 9271177 T12 + 582016a T6)3 + 96270c T54
145 36 278

- 28734a 4 5 4117a3 ri 6+ 288 T27 + j6or 8)/18

A10 6 (-315315009 + 4473525a T81" 16190490 7 2 _ 153891ca61 3
Sj 4 ,53 62 78

+ 134907 9 - 77 - 297903 T1 + 3927 + 15al8 )/5

A10 7 ' (129729600a9 263377800o T81 + 192158694a7 T2 57689219c T613
99 58.54 4 5 3 6 2]78

+ 3997518054 + 11445424 T'r - 1545463 TI - 3339a2 7 + 630aT8 )/ 1 35

A10 8 - ( 275675400a + 702180000c 8 - 706228416a 7 i + 356829856o 6T3

5 4 4 5 27- 94372752oa1 + 11872992c4115 3708,ba - 44064a T7

+ 2 5 2 0 aT8 )/315
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Table 4--continued

A1o 9 = (61261200a - 18 320 2 65 0 a 8 + 225428517a 7 2 148124682a%963

5 4 4 5 36 27
56404494c5• - 12620754a I5 + 1599597c 36 1031222 7

+ 2 5 2 0a 8 )/140

9 8 7 2 6 3
AIO 10 = (-1047566527 + 353598543a 81 " 502107309a 71 + 3916728650cTI

5 4 4 5 3 6 2 7
183840261c 5• + 53443743a4Tj - 9532127a TI + 993411o2T7

- 53955T 8 + I134T9 )/1134
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Appendix B

AN ALTRAN PROGRAM FOR GENERATiNG A
mn

The ALTRAN program listed in this appendix is used for computing

the polynomia'.s Amn of Eq. (228). A recurrence relation similar to

Eq. (153) is the basis for the routine.

In order to execute this program, an ALTRAN compiler is required

to produce MAP and, thereby, the final object code.t The accompanying

routine and its associated control statements are appropriate for

execution on The RAND Corporation's IBM 7044 computer. The prologue

to the listings describes the program's parameters, usage, and limita-

tions.

t

The ALTRAN coupiler consists of transfers to ALPAK, a group of
subroutines for operating on certain polynomials and rational functions.
The details of ALTRAN and ALPAK, including the format for representing
polynomials, are discussed in Ref. 38.
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C THE FOLLOWING LISTING IS AN ALTRAN PROGRAM FOR COMPUTING
C THE POLYNOMIALS LAMBDA(MIN) IN THE VARIACLES SIGMA AND BETA.
C THE POLYNOMIALS ARE EXPRESSED AS CONSTANTS TIMES (S;GMA**(M-I))X
C ISETAS*1) FOR 1-0O19,... 9M AND FOR M-192, ... AND FOR RdzI,2vo...,
C THE LAMBDAIMtN) ARE ZERO FOR N GREATER THAN M.
C THE FOLLOWING PROGROP CALC'ULATES LAMBDA(MN) iOR Mm1,zv*...lO.
C THE CONTROL CARDS LISTED BELOW INDICATE THE APPROPRIATE DECK
C SET UP FOR EXECUTION ON THE IBM 7044. BINARY DECKS ARE NOT
C FULLY LISTED. THE LAMBDA(M*N) ARE MADE AVAILABLE AS BOTH
C PRINTED AND PUNCHED CARD OUTPUT.
C
C
$CLOSE S.54J07,REWIND
SIB-JOB MAP,FILES
SFILE 'S.FBIA'thNON-,*#BLOCK=1O
$FILE 9S.FBIJA',NONEt*9BLOCK-10
$IiOIT UO79SRCH
SIBLOR TMG
SIBLOR TMGIO
SIBLOR TMGDFN
SIBLOR ALTRAN
$ENTRY TMG

STORAGE 13000
LAYOUT (L' SIGMA 18, GAMMA 18
ALGEBRAIC (L) LAMBDA(10910)
INTEGER MtNtR,l
LAMBDA(l1, )-1
LAMBDA(2, 1:2*SIGMA
LAMBDA (2,2)=3*SI %'MAeGAMMA
PRINT LAMBDA( 1,IJLAMBDA(2. 1),LAMBDA(2,2)
PUNCH LAMBDA(1,1),LAMBDA(2,1),LAMBDA(2,2)
DO 20 Mm3t1O
laM-1
DO 15 P4=1,1
LAMBDA(MN)=LAMBiDA(M-1,N)*(N*(SIGMA-GAMMA)+I*(S[GMA4-GAMMA))/(M-N)
PRINT M,N,LAMBDA(MN)
PUNCH LAMBDA(MNJ

15 CONTINUE
LAMBDA(MtM)=l
00 16 RalI
LAMBDA(MM)=LAMgDAIMM)*(M*(SIGMA-GAMMA)+R*(SIGMA+GAMMA))I(R-M)

16 CONTINUE
PRINT LAMBDAIMM)
PUNCH LAMBDA(tiM)

20 CONTINUE
STOP
END
FINiSH

$I BSYS
$CLOSE S.SU06,REWIND
SIB.5OB MAPolopi
SIEDIT U06tSRCH
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SIBSNAP AL TRAN
SIEDIT U079SREH
SIBLOR ALFSRT

SILRREADF
SIBLOR READD
SIBLOR READI

jSIBLOR OUT
SIBLDR ~'J7Ut*CHP
SIBLDR ALF
SIISLDR ALP
SIEDIT IN
SIBLOR lIftED 10/28/66
SCDICT IORED

* C BINARY CARDS DELETED
Sl$EXT IORED
C BINARY CARDS DELETED
SDKEND bOREV
SIBLOR POSTIX 10/28t66
SCDICT POSTIX
C BINARY CARLDS DELETED
$TEXT POSTIX
C BINARY CARDS DELETED
SOKEND POSTEX
SENTRY ALT
sIBSYS
$CLOSE S.SU079REMOVE
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Appendix C

A FORTRAN IV PROGRAM FOR GENERATING THE COEFFICIENTS IN A
mn

The FORTRAN IV program listed in this appendix is used to compute

the constants in the polynomials A of Eq. (228). The routine is
mn

based on Eqs. (237), (240), and (241) of Appendix D.

The following program is compatible with the IBM 7044, 7094,

and 360 series FORTRAN IV compilers. The program obviates the large

storage needed in the ALTRAN routine discussed in Appendix B. The

routine also allows cross-checking with the results of ALTRAN.

The prologue to the listing describes the parameters, usage, and

limitations of the pregram, as well as the format of the printed

results. All of the computation is performed in double precision.
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$IBFTC COEFF
C
C

C THIS ROUTINE PRODUCES THE MATRIX OF LAMBOA-M,N) COEFFICIENTS.
C M RANGES FROM I TU 15 AND N RANGES FROM I TO M.
C THE COEFFICIENTS ARE ZERO FOR ALL N GREATER THAN M.
C THE COEFFICIENTS OF THE VARIABLES SIGMA**I X BETA**J ARE GIVEN
C FOR EACH POLYNOMIAL LAMBDA(M,N). TAE OUTPUT FORMAT IS AS FOLLOWS
C M- ,N= , POWER OF SIGMA= , PCWER OF BETA= , COEFFICIENT=
C ALL COMPUTATION IS IN DOUBLE PRECISION. FOR M GREATER THAN 15
C HIGHER PRECISION IS REQUIREU, THE INDEXING MUST BE INCREASED
C AND THE DIMENSION STATEMENTS MUST BE ADJUSTED.
C
C

DOUBLE PRECISION S(16#16tF(t6),AMtANqA,ANSBvC
INTEGER RP
COMPLEX Q
LOGICAL TEST
WRITE(6,6)

6 FORMAT(lHI////IOX,IHM,3X, IHN,3X,It4HPOWER OF SIGMA#3X9
.13HPOWER OF BETA,3X,30H(.OEFFICIENT OF SIGMA-BETA TERM ////)
00 1 M=I,15
S ( 49, M) =I DO
AM*DBLE(FLOAT(MI)
S(M÷9I,)=-AM*SlM, 1)
MISM÷I

00 1 KxMII5
SM,qK)=O.DO

I CONTINUE
DO 4 M=2,15
AMuDBLE(FLOAT(M))
DO 4 K=2,15

4 S(M4IqKI=S(M,K-1 -AM*S(M,K)
F(II=I.DO
FI1)=F1.)
FO 2 1=2F14

2 F2I2II= *UBLE(FLOATII))
2O 10L M=9II
AM1DBLEIFLOAT(M)I
M2=M-L
DO 100 Nxl,M
AN=DBLE(FLOAO0N)M
MN=M-NIL
A=|I-N4 I *IM+N)I/F(N+I)*F(MNI)
DO tIoo 1I*,M

ISIGMA=IABS(M-II)
IFIII.EQ.M.AND.N.NE.M) GO TO 100
IBETAnIABS(M2-ISIGMA|
ANS=O.D0
DO 3 KD[,M
MK0M-K +1
bxu-ANK *K*S(MK)1FIMK)*F(K)
DO 3 R=IMMK

MKR-M-K-R,2
UO 3 P=!',K
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C~a*(-1.DO)**(P-1)
KPOK-P* I
IFI (N-R-P+1).EQ*ISIGMA) ANS-ANS+C/IF(PJI*F(P)*F(MKR)*F(KP))

3 CIJNTINUE
ANSs-ANS*A
QuCMPLX(O.,1.)**lBETA
IQI=RE-AL(Q)
IQ2*AIMAGIQ)
TES1'IQ2*EQOeAND*IQI.LT.0
IFITEST) ANSa-ANS
IFITEST) WRITE46,1) 14,NISIGMAIBETAANS

7 FORMATI9X,12,2XI2,9X,12,15X,12, IIXD24.16)
IFITEST) GO TO 100
TEST. IQI.EQ.O.AND. 1Q2.L 1.0
IF(TEST) ANS--ANS
IFITEST) WRITE(6,5) MNtISIGMA91BETAtANS

5 FORM'ATI9XI2,2XI2,9XI2,15XI2, tIXD24.l6,2XlHI)
IFITEST? GO TO 100
IF(IQI.EQ6O.AND.IQ2.GE.O) WRITE(695) MtNtISIGMAIBEJAtANS
IF(I1Q2.EQ*O.AND.IQI.GE.O) WRITE16,7) MNIS[GMA#IBETAANS

100 CONTINUE
CALL EXIT
END
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Appendix D

A SERIES REPRESENTATION FOR A
___________________mn

For reasons discussed in Appendix A, i series representation for

A is a useful supplement to the product form given in Eq. (228).
mnn

Starting with Eqs. (68) and (228) for cl and A ,n one can write

- (230)
mn =m inn

and

A (aj • (231)
mn omn

From Eq. (78) it follows that

Cmn = -1 (ml)k+n (i) S(k) nk zm-k (232)•mn M= I• (-im n z(2)

k=O

where z is defined by Eq. (71), and S(k) are the Stirling numbers
m

of the first kind given by Eq, (73).

Thus

A = L1)m-l in (-I)k S(k) nk -k- (a-j)k-I (233)
inn (m-n)' n! i m

k=9

The binominal theorem(37) indicates that

m-k
(O+jr)m-k a m-k-r 00)r (renk) (234)

r=0

and

k-i

(CF-J ) k-l I k-l-p (_jo)p (k1) (235)

p=0
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Substitution of Eqs. (234) and (235) in Eq. (233) therefore results in

ml*1mm-k k-I k 1 ()

An Ln'.(m-n)'. r:p(m-k-r)! (k-p- l) am'r'pl )r (236)

k-O r-O pJ0

Since S(0) 0, the series representation for Amn simplifies to

nnlm m-k+1 k

(-I)k 5(k) nk (mk);(l
(-)1 m (n

k=l r=l p=l

S) ) (237)
(-!)P(i)r'p om- r-p+lii r+p- 2

(r-1) l(p-l)I(k-p) '(m-k-r+l) !

In order to obtain the coefficients ci in the representation

m-I
l rn-i-i i

Amn = ci a 1 (238)

i=O

which follows from Eq. (237), one notes that r and p must be selected

according to

{ m-l- m-r-p+l

p 1,2,...,k (239)
= 0r-p-2 k= 1,2,...,m

Thus, for any value of i and r

m-l-i = m-r-p+l i = 0,1,...,m-l; k = 1,2,... ,m; r = 1,2,...,m-k+l (240)

so that p is constrained to the value(s)

p - i-r+2 with p C (l,2,... ,k) (241)
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Consequently, c is the aggregate of all terms of Eq. (237) obtained

by allowing k to range over the integers from i to m; r, from i to

m-k+l; and p = i-r+2, with p contained in the set k 1,2,...,m. Such

a summation is easily programmed for digital computation; a FORTRAN IV

routine for finding the c. is provided in Appendix C.1.
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Appendix E

A FORTRAN IV PROGRAM FOR COMPUTING EXPONENTIAL APPROXIMATIONS g(t_

The accompanying program is designed to calculate the exponential

approximation g(t) to a prescribed function g(t) C L (O,co). The

algorithm is based on the recurrence relations Eqs. (157) and (158)

th
for the m orthonormal basis function X (t), on recurrence relation

m

Eq. (153) for X n'and on Eqs. (132) or (162) for the moments of g(t).
mn'

These moments are approximated by a 64-point Gaussian quadrature

scheme and are used to form the Fourier expansion coefficients a
m

according to Eq. (131). The approximant g(t) is finally obtained

from Eq. (133).

The numerical examples discussed in Section IX have been solved

with the use of program APRX. The values of a and 0 obtained from

Eqs. (175), or from Eqs. (184) and (185), are input parameters to

the program as described in the prologue of APRX. All other program

options, definitions, and limitations are also clarified in the

listings.

The real and imaginary parts of g(t) must be supplied as the

double-pr' ision funcrion subroutines named GR(T) dnd .;I(T) , respec-

tively. Once A.PRX is entered, GR, GI, and all the supporting routines

are automatically invoked to produce a 51-point tabular and graphical

display of g(t). Card output of g(t) for tobsequvt[, pro'essing is

also available.
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$1BFTC APRX
C

C THIS ROUTINE IS THE MAIN PROGRAM FOR OBTAINING AN EXPANSION OF
C A GIVEN FUNCTI3N GIT) IN TERMS OF THE ORTHONORMAL SEI X(MTi.
C THE REAL PART OF G(T) MUST BE SUPPLIED AS A DOUBLE PRECISION
C FUNCTION SUBROUTINE CALLED GRIT). AN EXAMPLE IS GIVEN AT THE
C END OF THE LISTINGS. THE IMAGINARY PART OF GIT) MUST BE SUPPLIED
C AS A DOUBLE PRECISON FUNCTION SUBROUTINE CALLED GIlT). AN EXAMPLE
C IS GIVEN AT THE END OF THE LISTIMGS. THE REPRESENTATIOM IS BEST
C IN AN INTEGRAL SQUARE ERROR SENSE OVER THE INTERVAL ZERO TO
C INFINITY. IN ORDER TO FACILITATE THE INTEGRATION AND PLOrTING
C THE FOLLOWING PARAMETERS MUST BE READ IN FROM A DATA CARD
C ACCORDING TO THE FORMAT NUMBER 8 GIVEN BELOW.
C MC=THE NUMBER OF TERMS DESIRED IN THE EXPANSION.
C SIG5THE VALUE CHOSEN FOR SIGMA.
C BETuTHE VALUE SELECTED FOR BETA.
C AATHE SMALLEST VALUE OF T (GREATER THAN OR EQUAL TO ZERO) BEFORE
C WHICH THE PRESCRIBED FUNCTION GIT) IS ESSENTIALLY ZERO.
C 88THE LARGEST VALUE OF T (GREATER THAN ZERO) AFTER WHICH GIT)
C IS ESSENTIALLY ZERO. AA AND 88 ARE THE LIMITS USED IN COMPUTING
C THE FOURIER COEFFICIENTS FOR THE FVPANSION ON ZERO TO INFINITY.
C GRMAXaMAXIMUM VALUE OF THE REAL PART OF GITI TO BE IN THE GRAPH.
C GRMINuMINIMUM VALUE OF THE REAL PART OF GIT) TO BE IN THE PLOT.
C THE SAME ORDINATE SCALE WILL BE USED IN PLOTTING THE IMAGINARY PART.
C TMAX=MAXIMUM ABSCISSA VALUE TO BE USED IN THE PLOT OF G(T).
C TMIN=MINIMUM ABSCISSA VALUE TO BE USED IN THE PLOT OF GIT).
C IPUNCHzO IF THE PLOTTED POINTS OF GRITl AND Gtit AND THE
C APPROXIMATE VALUES OF GHATR(T) AND GHATI(T) ARE NOT TO BE PUNCHED
C ON DATA CARDS (ACCORDING TO FORMAT NUMBER 7 BELOW).
C ALL COMPUTATION IS IN DOUBLE PRECISON. !F MC, THE NUMBER OF
C TERMS IN THE EXPANSION, IS GREATER THAN 20, THE PROGRAM DIMENSION
C STATEMENTS MUST BE ADJUSTED. ALL SUBSEQUENT SUBROUTINES ARE
C AUTOMATICALLY CALLED ONCE THE MAIN ROUTINE APRX IS ENTERED.
C
C

DOUBLE PRECISION CFRI20)CFI(20),GHATRGHATITPSIGBET
,tERRORRRMSEAABBS2PESIGT.PIt
.LSR(2020),LSI(2020I) S1(20) tS2(20)

COMMON ICOEFF/ CFRCFl
COMMON /MOMENT/SltS2
COMMON /LSCOM/LSRUSI
COMMON SI~iBETMCNNNAABBS2PESIGTdT GHATRtGHATI
EXTERNAL ERRORR
REAL GRAPHIIOOO),ORDR(5,)tORDIISIIABSCISItH(Si)HH(s5I
DATA PI/).1419265358979300/
S2P-DSQRTI2.DO*PI)

I READ(0,8) MCtSIGIBETAAtBBGRMAXGRMINTMAXtTMINIPUNCH
e FORMATIi1,2016A1, 2O5.l94F5.1,IS)

WRITEtI623) SIGBETqMC9AAqB0
23 FORMAT(IH1,6HSIMAuU24.16//6H BEtA.=924.16//BH FOR Ma |12,6H TERM

.S //9H FROM T- tD24.1611TH TO T- 9D2.16//)
CALL LAMBDA
WRITE16,IS)

18 FORMAT(ti//H THE MATRIX OF LAMBDAIMtN) I1)
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D0 19 M:lMC
19 WRITE16,0 (MNLSR(MNJLSI(MN),N1,9M)
20 FORMAT13H L(vI29IHqI2,;PH)zO24.I6,4H +1 tD24e.16)

WRITE(6917)
17 FORMATMI//H THE MOM1kNT VECTOR/1

CALL COEF

16 FORMAT13H G(v12,2H)x#D24.I6v4H +1 ,D24.16 I
WRITE469900)

900 FORMAT(//7H THE REAL AND IMAGINARY PARTS OF THE EXPANSION LOWF
.ICIENTS , A(M)If
WRITE16,901) 4 ICFRIA),CFI(I ),IaIMC

901 FORMAT14H A(9I292H~z*DZI,.1695H 9j D24.16)
OIVz(TMAX-TMIN)/50.
DO 10 11,v5l
A5SC(I)aAAtFLoAT( I-1)*DIV
TsD8LE(A'BSC( I))
HM- IGRIT)
HH( 1 )mG1 T)
CALL GHAT
OROR (I ) GHATR
ORDI4 I)=GMATI
IF(IPUNCP) 11,10911

It WRITE(797) ABSC(I),H(I),HH(IbO0ROR(I),ORIJI(J
7 FflRMAli5F1O.4)

10 CONTINUE
CALL IN1GRL(AABB,.ERRORRtRKSE)
RMSERmDSQRTlIRMSE) / I B-AA)
CALL PLOT2(GRAPH,TMAXTMINGRMAXGRMIN)
CALL PLIJT3I1HIABSC( 1INI 1,51)
CALL PLOT3IlH*vABSC( 1),ORDRII',5I)
WRITE (6,808)

808 FORMAT(///)
WRITE(69800) (ABSCII,,ORDR(IlORD!II),HII),HH(I~tlat,51

800 FORMAT(4H TvF6.2e3XQHRE(GHAT)zE 17.8, 3X,9HIlMIGHAT)=,E17.8,3X9
.6HRE(G)-,EI7.8 3X,6HIM4 G)=,E17.8
WRITE(6,812) RMSER

812 FORMAT(II/15H THE RMS ERROR= , E10.3/)
WRITE469809

809 FORMATII Ik)
CALL PLOT4I1,LHI
WRI TE(6*801)

801 FORMAT(35H0+mREIGlT)) *-RE4GHATIT3)
CALL PLOT2(GRAPHTMAXtiMINGRMAXGRMIN)
CALL PLOT3(I H.,AB'C(1) ,HHI 11,51)
CALL PLOT3( 1H*,ABSC( 1),ORDI 11) 5I:
WRITE46,809)
CALL PLOT411,1H)
WRITE (6, 802 I

802 FoRMAT(35M0+sIMlGIT)) *uIMIGHAT(T))
GO TO I
CALL EXIT
ENO
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SISFTC LAMBUA
C
C
C THIS SUBROUTINE COMPUTES Iltk CCEFFIC.ENTS LAMBOAIM,N) IN DOUBLE
C PRECISON. THE REAL ANDO IMA(C1NARY PARTS Of LAMBDA(M.N) ARE STORED

IN 4PRAYS LSRIX,N) AND LSI(MtN) RESPECTIVELY.
C
C

SUBROUTINE LAMBDA
DOUBLE PRECISION LSRE 20,20),LSI(2C120),SIGBEsPIA,IBCANtAN,
.Q*EF ,(,HAK,D
DATA P113.14159265358q~q3/
L0O4MON SIGIRET,MC
COMMON /LSCOM/1SR*LSI
AuSIG*S IG+BET*BET
I1*5IG*S IG-6ET*8ET
C-2. 00*SI G24BET
LSR(Itl)=DSQRT(SlrJPI'

DO I P=I,NC
AM=

I-=C*AM
G=B*AM
UsDSQRT( (AM+1.OO)/AM)
DO 2 N=1,M
ANz N
QmD/ (A*( iM+ I. 6A)
LSR(M.I,N)z-(ISR(MtN)*(AN*A. G)-LSI(MN)*F)*Q

2 ISI (M+I ,N)(LSI (M,Nl*IAN*A. G)*.ISR(M*N)*F)*Q
HuDSQRT(AM+ 1.00)
I-zE*H*L SRI1,t1)

00 3 K~l9M
EsF-LSR IM*1,K)

3 G=G-;LS 1(M14,1K)
LSRIM+1,M+I)=F

I LSI(M+1,M+l)=S,
RETURN
END

SIBFTL COEF
C,
r.
C THIS SUBROUTINE COMPUTES THE FOURIER COEFFICIENTS AIM) IN DOUBLE
C PKECISON. THE REAL AND IMAGINARY PARTS OF THE RESULTS ARE
C STORED IN THE ARRAYS CFR(M) AND CFI(M.f RESPECTIVELY.
C
C

SUBROUTINE COEF
LXTERN'AL RINTG,IINTG
DOUBLE PRECISION I INTG,RINTGSIGBETS2PLSR(20,2O3 ,AA.BB



.,LSI(20.?OI.CFR(2OICFI(20),SI(2o),S2i2OI.PI,Cuzo0.zo),C2(o,z'OI
* ,C20tZ CI,C" 20, 203 ES IGT, T
LORMON4 /COEFFICFRCFI
COKPPON /LSCONILSR,LSI
(DMMCPI IARRAY/CIC2*C3,C4
COMMON IMOMqE*4T/Sl,S?
LOMMON SIG,8ET ,MC,MNP4,AA,BB,S2P,ESIGI.T ,TGHATR,GI-AT I
DO 10 NXImc

LALL I%1,i(AA,zRiR%T(;9,Sl'IN))
CALL INT6AL(AA,BH~,IINTG,SZ(N))

10 CONTINUt
DO I PI-[,PMC
LFRIK)=u.Go

(F! (M)=O.Do
00 S 4zim
CFR( K) CFRIM) .LSR (M,N) l*SIfN) 41St 1PtNI*S2( N)
CFII Ml=CF It K) .1W(M,*4)2 (N )-LSI (M.N) 'SItN)

5 CONTINUE
(FRI K)=2P*CFR(M)
CF I IM)=S2P*Cr(N)

1 CONTINUE
30 2 M1I,NC
Do 2 P4= 1 04
Ct(MN)=CFRIM)*LSPCK.N4)-CFI(M4)*LSI(I14,N)
C2IM,pI)=-CFR(,q)eLSI(MP4)-CFI(M).LSR(pqN)
L3(PN)-CFI(M)*LSR(M,N)*CFRfM)*LSI(N,N)

2 C41M,N)=-CFI(M)*LSI(M,N)4.CFR(Nt)*LSR(MN)I
RE TURN
END

SIBFT7C GHAT
c
c
C THIS SUBROUTINE FORMS Tir REAL AND IMAGINARY PARTS OF THE
C APPROXIMATION GHAT(T) TO THE PRESCRIBED FUNCTION G(T). ALL THE
C C1-OMPUTATION IS Ift DOUBLE PRECISICN4. THE REAL AND IMAGINARY PARTS
C OF THE APPROXIMANT ARE STORED IN GHATR AND GHATI RESPECTIVELY
C FOR EACH VALUE OF THE INDEPENDENT VARIAdLE- T.
C
C

SUBROUTINE GHAT
OUnBLE PRECISION (1(20,203 ,C2i20.20),C3(?0,20) ,C4(20,20) ,EE,DE

.,GHATRG-HATIT,SIG,8ET,AA,BBS2P.ESIGT,BT,CC,SS
COMMON IARRAYICtvCZC3vC4
COMMON, SIG,BET,MCNNN,AA.BB,52PESIGT, T,GHATR,GHATI
I3TaBET*l
ESIGTZOEXPI-SIG*T)
GHATRO0.DO
GNAT 1-0.00
DO I. M~t,MC
0Ex1.00
00 t N-t,M
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CE'OE*ESIGT
EEsBT*DRLEIFLOATIN))
CCUDCOSIEE)
SS-OSIN(EE)
GHATRuGHATR+DE*(CCICtlMN)4SS*C2(MtN))

I GHATI-GHATIODE*(CC*C3(MN)+SS*C4IMtNJ)
GHATRxGHATR*S2P
GHAT|IGHATI*SZP
RETURN
ENO

$IBFTC RINTG
C
C

C THIS SUBROUTINE COMPUTES THE REAL PART OF THE MOMENTS OF THE
C PRESCRIBED FUNCTION G(T). THESE ARE USED IN COMPUTING THE
C FOURIER EXPANSION COEFFICIENTS. COMPUTATION IS IN DOUBLE PRECISON.
C
C

DOUBLE PRECISION FUNCTION rINTG(T)
DOUBLE PRECISION GR,GISIGB:TANT
COMMON SIGv8ETtMCN
ANvtN
RINTG-DEXP(-AN*SIG*T)*IGR(T)*DCOSIAN*BET*T)÷GI(T)*DSIN(AN*BET*T))
RETURN
ENO

SIBFTC IINTG
C
C
C THIS ROUTINE COMPUTES THE IMAGINARY PART OF THE MOMENTS OF THE
C PRESCRIBED FUNCTION GIT). THESE ARE USED IN COMPUTING THE
C FOURIER EXPANSION COEFFICIENTS. COMPUTATION IS IN DOUBLE PRECISON.
C
C

DOUBLE PRECISION FUNCTION IINTG(T)
DOUBLE PRECISION GRGISIGBET,ANtT
COMMON SIG98ETMCN
AN*N
IINTG-DEXPI-AN*SIG*T)*(-GR(T)*DSIN(AN*BET*T),GI(T)*DCOSIAN*BETTlI)
RETURN
END

$IBFTC INTGRL
C
C
C THIS PAOGRAM PERFORMS INTEGRATION IN ODUBLE PRECISION ANU

C IS BASED ON THE 64 POINT GAUSSIAN QUADRATURE FORMULA.

C AsLOWER LI&MIT OF INTEGRATION IN DOUBLE PRECISION.
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C B-UPPER LIMIT OF iNTEGRATION IN DOUBLE PRECISION.
C F-THE NAME OF THE DOUBLE PRECISION FUNCTION 10 BE INTEGRATED.
C ANSmTHE RESULTANT INTEGRATION IN DOUBLE PRECISION.
c
C

SUBROUTINE INTGRL(A,B,F,ANS)
EXTERNAL F
DOUBLE PRICISION AB,FANSX(323 ,W(32),SlS2,U(283,V(4),Y(28),Z 14)
DATA U/.0243502926634244325,09,..072993121787799039450t.1214628t9296
1120554410,P.169644420423992818037,. 21'14236437400070841509.264687162
2208767416374,. 31i322871 i902l0956158, *351220158337668115950, .402270
31579639916O3696,.44636601725i3464O87985, .489403t45707052957479, .531
42 794640 19894545658, 571895646202 6340342 84, .611155355172 393250249,1
5648965471254657339858,. 685236313054233242564,. 71988185017161082684
69, .7528 19907260531896612, .183972358943341407610, .81326531512219755
79742, .8406292962 525 80 362752, .865999398154092819761, .8893 1544599511
84105853, .910522137078502805756,.929569172131939575821,.94641137485
98402816062, .961008799652053718919, .973326827789910963742/
DATA V/ .98333625
103884625956931, .991013371476744320739,. 99634011677L9552793479.9993
11050417 357 72 1394 57/
DATA Y/.0486909570091397t0383, .04857546744150342693S,.048344162234
1802957170, * 47999388 596458 301728 . 047540 1657 14830308662,.*046968182
28162 100 17325,.*046284 79b5813 144 1??96,. 045491627927418 144480, .044590
3558163756563060, .043583724529323453377, .042473515123653589007, .041
4262563242623528610, .039953741132720341387,.0385501531786156291299.
503710S5512 8540240046040,.*0354 7221325688238 3811,. 03 3805t161837141609 39
62,.032057928354851553585, .030234657072402478868,.02833961261425948
13228, *0263 7746971505465 8672 , .024 352 702568710 8733 38, .0222 7017380838
83254159, .020134823153530209372,.017951715775697343085,.01572603047
960247 19 322 ,.0 1346304 78967 18642598,. 01116813946013112 88 19/
DATA Z/ .00884675
109S263639477239.00650'.4579689783628569.004147033260562467635,.0017
1183280721696432947/
DATA [START/+1/
Sl=(B-A)/?.D0
S2-(B.A)/2.DO
IF(START) 4,495

S DO 2 1-1,28
XfI )U( I

2 WII)SY(I)
D0 3 1=1,4
XI l+281=V( 13

3 W1d1281=Z(f)
4 ANS=0.DO

DO 1 1-1,32
1 ANS-ANS.WI 1)*(FSIS*X(I)4-S2[+F(-Sl*X(I)+S2))

ANS- A!0S *S
I STARTU-D
RETURN
END

SIBFYC ERRORR
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C
C

C THIS ROUTINE COMPUTES THE INTEGRAL SQUARE ERROR BETWEEN THE
C PRESCRIBED FUNCTION AND THE APPROXIMANT GENERATED BY THE
C ACCOMPANYING PROGRAMS. COMPUTATION IS IN DOUBLE PRECISION.
C
C

DOUBLE PRECISION FUNCTION ERRORRIX)
DOUBLE PkECISION SIGBETAABBESIGTtS2PTXtGHATRGHATIGRGI
COMMON SIGtBETtMCtNNNAABBtSZPESIGTTtGHATR•GHATI
T*X
CALL GHAT
ERRORRafGHATR-GR(X))**Z+(GHATI-GIfXI)**2
RETURN
END

DOUBLE PRECISION FUNCTION XR(M*T)
IIBFTC XR
C
C
C THIS ROUTINE COMPUTES THE REAL PART OF THE M TH ORTHONORMAL
C BASIS FUNCTION XIMvT). COMPUTATION IS IN DOUBLE PRECISION.
C THIS PROGRAM IS USED ONLY FOR CHECKING ORTHONORMALITY AND IS
C NOT OTHERWISE USED BY THE ACCOMPANYING PROGRAMS.
C
C

DOUBLE PRECISION LSR(20920 tLSI(20.23) S2PtANSIGBETT PI
.,ESIGTqDEqEEtAABB

COMMON /LSCOM/LSRtLSI
COMMON SIGBETMCtNNNAABB9S2PESIGT
DATA PI/3.1415926535897q3/
ESIGTaDEXP(-SIG*T)
DElI.DO
XR=O.OO
DO I N=,tM
ANsN
DExDE*ESIGT
EE*AN*BET*T

I ERSXR÷DE*ILSRI(tN)*DCOS(EE)-LSIIMN)*DSIN(EE))
XRuS2P*XR
RETURN
END

$IBFTC XI
C
C
C THIS ROUTINE COMPUTES THE IMAGINARY PART OF THE M TH ORTHONORMAL

C BASIS FUNCTION XINMT), COMPUTATION IS IN DOUBLE PRECISION.
C THIS PROGRNM IS USED ONLY FOR CHECKING ORTHONORMALITY AND IS

C NOT OTHERWISE USED BY THE ACCOMPANYING PROGRAMS.
C



C
DOUBLE PRECISION FUNCTION XI(MpT)
DOUBLE PRECISION LSR(20,20),LSI20 20),S2P,ANSIG,BET,T,PI

.,ESIGT,DEqEEqAABB
COMMON /LSCOM/LSRLSi
COMMON SIGtBETMCtNNNAA,BBS2PtESIGT
ESIGT=DEXPI-SIG*T)
DESI*.DO
XI=O.DO
DO t NatM
ANmN
EE-AN*BET*T
DE=DE*ESIGT

I XI.XI*DE*(LSR(M,N)*DSINIEE)+LSI(MN)*DCOSIIE))
XI=S2P*XI
RETURN
END

$IBFTC GR
C
C
C THIS ROUTINE SUPPLIES THE REAL PART OF A SAMPLE FUNCTION GIT).
C T-THE INDEPENDENT VARIABLE IN DOUBLE PRECISION.
C GR-THE REAL PART OF G(T) IN DOUBLE PRECISION.
C
C

DOUBLE PRECISION FUNCTION GRIT)
DOUBLE PRECISION T
IF(T.LE.O.DO) GO TO I
IFfT.LE..5DOB GO TO 2
IFIT.LE..95DO) GO TO 3
GR=DEXP(-2.42377DC*T)
GO TO 10

i ;R=O.DO
60 TO 10

2 GR=2.DO*T
GO TO 10

3 GR*-2.DO*(T-I.DO)
10 RETURN

END

SIBFTC GI
C
C
C THIS ROUTINE SUPPLIES THE IMAGINARGY PAPr OF A SAMPLE FUNCTION G(T).
C TmTHE INDEPENDENT VARIABLE IN DOUBLE PRECISION.
C GITHE IMAGINARY PART OF G(T) IN DOUBLE PRECIS;ON.
C
C

DOUBLE PRECISION FUNCTIUN GiUT)
DOUBLE PRECISION T
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--GI'0.DO
RETURN
END

$IBMAP PLOT
C THIS PLOTTING ROUTINE IS AN ADAPTATION OF SHARE UMPLOT FOR THE
C IBM7044 . THE ROUTINE UTILIZES THE FORTRAN-MAP INPUT-OUTPUT
C r-OGRAM FACILITY WHICH IS SUPPLIED AS A SEPARATE SUBROUTINE
* WRITES GRAPH IMAGES ON OUTPUT UNIT G
* CALLING SEQUENCES ARE
SCALL PLOTI(NSCALENHSBHtNVvSBV)
* CALL PLOT2I|MAGEXMAXtXMINYMAXtYMIN)
* CALL PLOT3iBCOX9YvNDATA)
* CALL PLOT4(NCHARtNHABCDEF...) HJS
I CALL OMIT(ARG) HJS
* CALL PLTAPE(ITAPEI HJS

ENTRY PLOT1 *
ENTRY PLOT2
ENTRY PLOT3
ENTRY PLOT4
ENTRY FPLOT4 G
ENTRY OMIT *

ENTRY PLTAPE G

EXTERN NDATA G

COL EQU 132 COLUMNS IN OUTPUT LINE (1401)
SPACS EQU 6 SET UNUSED SPACES AT RIGHT EDGE OF PAGE

REM OR CARD. SPACS MUST BE AT LEAST 6
G EQU COL-11-SPACS COLUMNS IN OUTPUT LINE AVAILABLE FOR IMAGE

SPACE 5 G
PLOTI
REM MAIN JOB OF PLOT1 IS TO EXAMINE ARGUMENTS AND PREPARE
REM SAMPLE GRIDLINE (DASH TO DASH-WORDS+1) AND SAMPLE
REM NON-GRID LINE (BLANK TO BLANK-WORDS÷I) FOR PLOT?

* G
PLOTI SAVE 192 ENTRY TO PLOTI G
* G

CLA 394 SCALE FACTORS AND DECIMAL POINT POSITIONS
STA DELTA
ADD FIVE
STA DELT
STZ WRON1 WRONI m 0 CLEAR ERROR FLAG, PLOTI
CLA ONE
STO WRON3 WRON3 = I SET ERROR FLAG, MISSING PLOT2
CLA* 494 NH, NUMBER OF HORIZONTAL GRID LINES
TSX FIX,2
TZE ERKI ZERO ARGUMENT ILLEGAL! ERROR RETURN
STO NH
CLA* 5,4 SBH, NO. OF SPACES BETWEEN HORIZ. GRID LINES
TSX FIX,2
TZE ERRI ZERO ARGUMENT ILLEGAL, ERROR RETURN

i
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STO SOH
LDQ SBH
MPY NH
STQ LINES LINES = NH*SBH MAXIMUM LINE INDEX
CL.A* 6,4 NV, NUMBER OF VERTICAL GRID LINES
TSX FIX92
TZE ERRI ZERO ARGUMENT ILLEGAL, ERROR RETURN
SO NV
CLA* 7,4 SBV, NO. OF SPACES BETWEEN VERT. GRID LINES
TSX FIX,2
TZE ERRI ZERO ARGUMENT ILLEGAL, ERROR RETURN
STO SBV
LDQ SBV
MPY NV
STO TOT TOT = SBV*NV MAXIMUM COLUMN INDEX
CLA TOT G
ADD ONE
STO TOTAL TOTAL = lOT + I TOTAL COLUMNS PER LINE
SUB GWID WHENEVER TOTAL .G. GRAPH WIDTH, ERROR RETURN
TMI PASS

* G
S RETURN 1, UNSUCCESSFUL PL01 G

* WRONI=1, SET ERROR FLAG, PLOT1 G
ERRI CAL OTAPE UNSUCCESSFUL PLOT1 G

CALL WDATA G
PIE FORM G
PZE ERIO,1 G
PIE WRONGO,3 G
PZE 0 G
CLA FPONE G
STO WRONI G
RETURN PLOTI

* G
PASS CLA TOTAL

TSX FLOAT,2
FOP SIXF
STQ TEMP
CLA TEMP
FAD N999
TSX FIXi,?
STO WORDS WORDS = TOTAL/6. ROUNDED UP TO NEAREST INTEGER
LDQ WORDS WORDS, NUMBER OF MACHINE LOCATIONS PER LINE
mpY SIX
STO TOTLS TOTLS - WORDS*6 BCD CHARACTERS PER LINE
LXA WORDS,2
CLA TOTLS
SUB TOTAL
PAX 0,1
CLA OSHt1 LAST WORD OF A HORIZONTAL GRID LINE
STO DASH*,2L SET UP LAST WORD IN HORIZONTAL GRID LINE IMAGE
LDQ BLNKK LAST WORD OF NON GRID LINE
STQ BLANK+1,2 SET UP LAST WORD IN NON GRID LINE IMAGE
TIX GA1,211 G
TRA GA2 ONE WORD PER LINF CASE G

* G
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GAI CLA nH ]G
GA3 STO DASH't,2 SET REMAINDER OF HORIZ. GRID G

STQ BLANK+,12 SET UP REMAINDER OF NON GRID LINE IMAGE
TIX GA392?1 G

G
GA2 STZ I COL. INDEX FOR VERTICAL GRID G
S• G
GAMMA TSX PLACB4 PUT VERTICAL GRID I IN IMAGE G

PZE IEYE
PIE I
PLE BLANK

G
TSX PLACB94 PUT + AT INTERSECTIONS G
PZE [PLUS
PZE I
PZE DASH

G
CLA I
ADU SBV
STO I IuI[SBV, INCREMENT COLUMN INDEX FOR VERT GRID
SUB TOTAL
TZE GAMMA IF ZERO OR MINUS LINE IS UNFINISHED, RETURN
TMI GAMMA

* G
DELTA CLA ** NSCALE NSCALE, DETERMINES SCALE FACTOR MODIFICATION

TZE ETA STANDARD SCALE FACTORS AND DEC POINT POSITIONS
G

AXT 494 GIs DEC POINT POSITION FOR X
DELT CLA **,4 NSCALE÷5 G5 = SCALE FACTOR FOR X G

TSX TFIX*2 G4- DEC POINT POSITION FOR Y
STO G3÷4,4 G3 = SCALE FACTOR FOR Y G
TIX DELT9491

* G
ETA CLA G4

TZE GA7 G
TPL GA7 G
ZAC NEG.DEC.PT. POSITION = 0 G
IRA GA8 G

GA7 CAS EIGHT MAX. DEC. PLACES, ORDINATE, Z8 G
CLA EIGHT IF G4 GTR THAN 8t SET G4=8
NOP G

GA8 STO G4 G
CLA GT G

GA9 SUB TEN ABSCISSA DEC. POINT IS MOO 10 G
TPL GA9 G
ADD TEN
TIE GAIO G
TPL GAtO G
ZAC NEG.DEC.PT. POSITION a 0 G

GALO srn G7 G
CLA SOV ShVt COLUMNS AVAILABLE FOR EACH ABSCISSA VALUE
STO G9 G9 x SBV FIELD WIDTH FOR ABSCISSA VALUES G
CAS G7 IF GT GTR THAN OR EQU TO G99 SET G1-G9-1
TRA PASS4 ENSURES DEC POINT INSIDE FIELD
NOP
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SUB ONE
STO G Cq-I G

PASS4 CLA TWELV TWELVE SPACES ON LEFT FOR ORDINATE AND LABEL
ADD G7
STO G6 Gb =G7+i2 FIELD WIDTH, LEFT ABSCISSA VALUE
C'A RECLT
SUB TOTAL
SUB G6
TPL PASS5 RECLT-TOTAL-G6.LTo,9 REDUCE G6 G
ADD G6
STO G6 G6 REDUCED TO NUMBER OF COLUMNS AVAILABLE

PASS5 CLA G6 WHENEVER GT.GE.G69 G7 = G6-1
CAS G7 ENSURES DEC POINT INSIDE LEFTMOST FIELD
TRA EXIt"
NOP
SUB ONE
STO G7 G6-1 G

* G
, G
* SET THE FORMATS G
, G
EXIT LDQ G3 HJS

TSL BCDCON HJS

SLW FMIA HJS
CLA G3 IF G3 IS NEGATIVE SET SCALE HJS
TZE HJSI FACTOR IN FMI TO NEGATIVE HJS
TPL HJSI HJS
mSM FMIA HJS

HJSI LOQ G64 HJS
TSL BCDCON G
SLW FMiB G
LDQ G5 HJS
TSL BCDCON HJS
SLW FM3A HJS

CLA G5 IF G5 IS NEGATIVE SET SCALE HJS
TZE HJS2 FACTOR IN FM3 TO NEGATIVE HJS
TPL HJS2 HJS
mSM FM3A HJS

HJS2 LDQ G6 HJS
TSL BCDCON G
SLW FM3B G
LDQ G7 G
TSL BCOCON G
SLW FM3C G
SLW FM3F G

LDQ mV G
TSL BLOCON G
SLW FM3D G
LOQ G9 G
TSL BCOCON G
SLW FM3E G

G
ZAC G
RETURN PLOTI EXIT, SUCCESSFUL PLOTI
SPACE 5 G
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SPLOT2 HJS
REM MAIN JOB OF PLOT2 IS TO REPEATEDLY LAY DOWN SAMPLE
REM GRIDLINE (DASH TO DASH-WORDS.I| FOLLOWED BY ISBH-t)
REM NON-GRID LI-E4i (BLANK TO BLANK-WORDS+I) TO FORM THE
REM GRID IN THE IMAGE REGION

G
(I G
PLOT2 SAVE 1,2 ENTRY TO PLOT2 G
* G

STL WRON3 WRON3 = 0 CLEAR ERROR FLAG, MISSING PLOT2
STZ WRON2 CLEAR ERROR FLAG, PLOT2 G

CLA WRO1II
TNZ GA12 G
CLA 3t4 IMAGE ADDRESS G
STA PLY22 G
STA PLT23 G
STA PLT37
CLA* 4,4 XMAX, MAX. ABSCISSA VALUE G
TSX TSTFP,2 TESI FOR FLOATING POINT ARGUMENT
TRA BAD G
STO XMAX
CLA* 5,4 XMIN9 MiN. ABSCISSA VALUE G
T$X TSTFP,2 TEST FOR FLOATING POINT ARGUMENT
TRA BAD G
STO XMIN
CLA' 6,4 YMAX9 MAX. OkDINATE VALUE G
TSX TSTFP,2 TEST FOR FLOATING POINT ARGUMENT
TRA BAD G
STO YMAX
CLA* 7,4 YMIN9 MIN. ORDINATE VALUE G
TSX TSTFPt2 TEST FOR FLOATING POINT ARGUMENT
TRA 13AD G
STO YMIN

G

CLS XMIN
FAD XMAX
TZE BAD ERROR IF XMIN .EQ, XMAX G
STO SPANX SPANX = XMAX - XMIN ABSCISSA SPAN

G

CLS YMIN
FAD YMAX
TZE BAD ERROR IF YMIN 1EQ. YMAX G
STO SPANY SPANY a YMAX - YMIN ORDINATE SPAN

G
CLA LINES
TSX FLOAT,2
FDP SPANY
STQ U U a LINES/SPANY NUMBER OF LINES PER UNIT Y

* G
CLA TOT
TSX FLOAT92
FOP SPANX
STQ V V = TOT/SPANX NUMBER OF COLUMNS PER UNIT X

, G
CLA NV

IL
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TSX FLOAT,2
STO TEMP
CLA SPANX
FOP TEMP
STQ DELTX DETLX = SPANX/NV X INCR BETVN VERT GRIV LINES

S* G
CLA NH
TSX FLOAT,2
STO TEMP
CLA SPANY
FOP TEMP
STQ DELTY DELTY = SPANY/PH Y INCR BETWN HORZ GRID LINES

I G
SSTZ I 1=0 INITIALIZE WORD COUNTER FOR IMAGE REGION

STZ J J=O INITIA!.IZE LINE CnUNTER FOR IMAGE REGION
* G

TNEXT STZ K K=O INITIALIZE WORD COUNTER FOR HORZ GRID LINE
* G
LNEXT CLA K LOOP TO PLACE ONE HORIZONTAL G

PAX 0P2 GRID LINE IMAGE (DASH REGION) INTO IMAGE REGION
ADD I
PAC 0,4 G
CLA DASH,2

FLT22 STO 0*,4 IMAGE G
CLA K
ADD ONE
STO K K s K.i INCREMENT WORD COUNTER FOR LINE
SUB WORDS
TNZ LNEXT IF NON-ZERO, LINE NOT FINISHED G

* G
* G

CLA I
ADD WORDS
STO I I = [+WORDS INCR WORD COUNTER FOR NEW LINE

* G

CLA NH SEE IF FINISHED G
SUB J
TZE GAl3 WHEN J.EQoNH, IMAGE GRID COMPLETE G

* G

CLA ONE

STO TEMP TEMP = I INITIAl IZE BETWEEN GRID LINE COUNTER
* G

TFIN STZ K K=O INITIALIZE WORD COUNTER FOR EACH LINE
* G
LFIN CLA K LOOP T1, PLACE SBH NON-GRID LINE G

PAX 0,2 IMAGES IBLANK REGION) INTO THE IMAGE REGION
ADO I
PAC 094 G
CLA BLANKt2

PLT23 STO **•4 IMAGE G
CLA K
ADD ONE
STO K K a K+l INCREMENT WORD COUNTER FOR LINE
SUB WORDS



TNZ IFIN IF NON-ZERO, LINE NOT FINISHED G
* G

CLA '
ADD WORDS
STO I I I+WORDS [NCR WORD COUNTER FOR NEW LINE
CLA TEMP
ADD nNE
ST0 TEMF TEMP = TEMPej 1NCREMENT BETWN GRID LINE COUNTER
SUB SBH
TNZ TFIN IF NON-ZERO, MORE LINES REQUIRED G

G

CLA 
J

ADD ONE
STO J j = J+l INCREMENT LINE COUNT FOR IMAGE REGION
TRA TNEXT RETURN FOR ANOTHER HORIZ. GRID LINE G

* G
* G
* RETURN 2, UNSUCCESSFUL PLOT2 G

* SEI ERROR FLAG, PLOT7 G
BAD CAL (,TAPC G

CALL WL'ýTA G
Pz! FORP G
!iE ER2,0,k r
PIE WRONGO,3 G
PIE 0 G

* G
GA12 -LA O0E SET 'NO PLOT2' FLAG G

STO WRON3 G
&LA FPTWU G
STO WRON2 G

* G
* G
GAI3 RETURN PL0T2 G

SPACE 5 HJS
PLOT3

REM PLOT3 EXAMINES THE CATA POINT rO MAKE SURE IT IS
REM FLOATING FO!NT AND rhcN PLACES I; IN THE PROPER SPOT
REM ;N THL .iMAGE RrgION

* G
P.0T3 SAVE 1,2 PLOT3 ENTRY POINT G

STI FLAGI FLAGI = 0 PLOT3 RETURN PRESET TO ZERO
CLA 3,9 ADDRESS, PLOTTING CHARACTER G
STA PLT36
CLA 4,4 BASE ADDRESS, X COORDINATES G
STA PL T 35
CLA 5,4 BASE ADDRESS, Y COORD4I4ATES G
1TA PLT34

G
CLA WRONI
(jRA WRIN2
TNZ GA16 OUT IF BAD PLOT1 OR PLOT? G

* G
* G

ORA WRON3 G



TZE GA14 OUT IF PREVIGUS PLOTZ G
G

-AL OTAPE Pt•T3 ./O PLGTZ G
CALL wDATA G
PIE FORM G
PiE ER3,O,3 G
PZE 0 G

GA16 CLA FTHAF iG
0 G
GA18 RETURN PLCT3 G

SPACE 5 G
* G
GAI4 CLA* 6,4 NOATA, '0. OF PCI4TS G

TSX FIX.2
T41 GAI? G

G
CLS FTHRE IF %DATA = 0, NO DATA POINTS. RETjRN MINUS THREE
IRA SA18 G

* G
GAIT STO NOATA NO. OF POINTS G

STZ K K=U INITIALIZE DATA POINT COUNTER
* G
LTEND LAC K,I G
* 6

PLT34 CLS **,I Y(K) Y COCRDINATE OF (K+I)TH DATA POINT
TSX TSTFP,Z TEST FOR FLOATING PO!NT ARGUMENT
TRA GA2I G
FAD YMAX

LRS 35
FMP U
IPL GA19 G
FSB 405
TRA GA20 G

GA19 F_'D N05 G
GA20 TSX FIXI,2 G

STO I 1=(YMAX-Y(K))*U +OR- 0.5, LINE INDEX FOR DATA PT
TZE PLT35 Y LIES.ON TOP CRID LINE G
TMI GA21 REJECT Y IF ABOVE TOP GRID LINE G
SUB LINES
TIE PLT35 Y LIES ON BOTTOM GRID LINE G
TPL GA2I REJECT Y IF BELOW BOTTOM GRID LINE G

* G
PLT35 ZLA **tl X(K) X COORDINATE OF IKfl)TH DATA POINT

TSX TSTFP,2 TEST FOR FLOATING POINT ARGUMENT
TRA GA2I G
FSB XMIN
LRS 35
FMP V
TPL GA22 G
FSB NO5
TRA GA23 G

GA2Z FAD N05 G
GAZ3 TSX FIXI,2 G

STO J J=IXIK)-XMIN)*V +OR- 0.5, COL INDEX FOR DATA PT
TZE GA24 X LIES ON LEFTMOST GRID LINE G
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"SNi GAT I REJECT X IF LEFT OF GRID G
SUB TOT

TZE GA24 X LIES ON RIGHT GRID LINE G
TPL GAZI REJECT X IF RIGHT OF GRID G

GA24 LDQ TOTLS G

LLS 35

ADD J

STO L LXTOTLS*I+Jt CHARACTER POSITION !N IMAGE REGION
TSx PLACF,4 PLACE BCO IN L-TH G

PLT36 PZE 1* BCD G
PZE L G

PLT37 PZE *0 iNAGE G
0 G
"4ENO !LA K

ADD ONE
STO K K=Ke IINCREMENT DATA POINT COUNTER
SUB NDATA
TNZ LTEND IF NONZERO, MORE DATA POINTS TO BE PLOTTED

* G
CLA FLAGI PLOT3 RETURN
RETURN PLO3 G

GAZI CLS FTHRE PLCT3 REJECTED POINT G
STO FLAGI G
!*A THEND G
SPACE 5 G

*PLOT4 ( FPLOT4 I HJS
REM PLOT4 DECOMPOSES THE STRING OF CHARACTERS IN LABEL
REP AND WRITES THE CURRENT GRAPH ON TAPE OTAPE

* G
G

PLOT4 SAVE 1,2 ENTRY TO PLOT4 G
* CG
* w034 ASSUMES ALL ARRAYS ARE STORED FORWARD HJS
FPLOT4 SYN PLOT4 THEREFORE BOTH ENTRIES ARE THE SAME G

t -G

CLA WxNI]
ORA WRnN2
TNZ GA26 OUT IF BAD PLOT1 OR PLOT? G

• G
* CG

ORA WRON3 G
TZE GAit OUT IF PREVIOUS PLOT2 G

G
CAL OTAPE UNSUCCESSFUL PLOT4 G
CA-L WDATA G
PZE FORN G
PZE ER3,0,3 NO PREVIOUSP.OT2 G
PZE 0 G

• CG
%GA26 CLA FPFOR RETURN 4, UNSUCCESSFUL PLOT4 G

RETURN PLOT4 GJ ° G
GA2T CLA 4,4 LABEL BASE ADDRESS G

L1
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STA PL41-
STA PLT42

CLA PLT37 IMAGE ADDRESS G

STA AODD G

STA C149 G

LXA WORDS,2 WORDS PER LINE G

SXD ADDe,2 G

SXD GAA4q2 G

CLA' 3,4 NCHAR, NO. OF CHARACTERS IN LABEL G
TSX FIX,?
ADD ONE

PAX 0,4 NCHAR.I G

AXT b69 SET CHAR. COUNT FOR LABEL WORD HJS

CLA YNAX SET TOP LINE G

STO YAXIS GRDINATE VALUE G
* CG
PLT41 LOQ *' LABEL GET FIRST LABEL WORD G

STI LABEL
CLA LINES
3TO FIXV FIXV LINcS MAXIMUM HORIZONTAL LINE INDEX

CAL IFOMT
ANA [FOUR IF IFONT - 495,6, OR 7, DELETE BOTTOM GRID LINE
TZE GA29 G

CLA LINES
SUB ONE
STC FIXV FIXV = LINES-1, MAX LINE INDEX WITH NO BOTT LINE

S" CG

CA23 STZ I INITIALIZE LINE COUNT FOR IMAGE G

AXT 0,2 INITIALIZE WORD COUNTER FOR IMAGE REGION HJS
* CG
* CG

CHECK CLA FIXV

SUB I
TMI GA30 FIXV-I NEGATIVE, IMAGE PRINT COMPLETG

* CG
TXH HJS3,4,t IF LABEL HAS BEEN COMPLETELY HJS

CAL BLNKK PRINTED, OR IF NO LABEL IS WANTED, HJS

SLW LABEL SET LABEL TO BLANK HJS

HJS3 ZAC HJS

LDQ I
DVP SBH
TNZ SKIP IF NON-INTEGRAL, BYPASS ORDINATE PREPARATION

CAL [FOMT
ANA TWO
TNZ SKIP IF IFOMT=Z,3,OR f. DELETE ORDINATE VALUE

* G
CAL OTAPE GRID-LINE IMAGE G

CALL WDATA G
PZE FMI G
PZE LABELO,1 LABEL CHARACTER G
PZE YAXIS9Oi. G

ADDB PZE **gO,** IMAGEODWORDS G

PZE G G
* G

CLA VAXIS ADJUST ORDINATE VALUE G

D-
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FSB DELTY G
SO YAXIS G

* G
GASO CAL ADOD MOVE TO NEXT IMAGE LINE G

ADD WORDS G
STA ADDR G
STA GA49 G
CLA I COUNT LINES G
ADD ONE GSTO I G

G

TNX CHECK,4,1 DECREMENT LABEL CHAR. COUNT HJS
CAL LABEL SET NEXT LABEL CHARACTER G
ALS 6 G
TIX GA32,1,I DECREMENT CHARACTER COUNTER IN LABEL WORD HJS
AXT 691 REINITIALIZE CHAR. COUNT FOR LABEL WORD HJS
TXI *+1929-I MOVE TO AND G

PLT4Z CAL *9,2 LABEL GET NEXT LABEL WORD G
GA32 SLw LABEL SAVE LABEL WORD G
* G

TRA CHECK AROUND FOR NEXT LINE G
* G
* G
SKIP cAL OTAPE WAITE IMAGE, NON-GRID-LiNE G

CALL WOATA G
PIE FM2 G
PIE LABELO,1 G

GA49 PIE **,0,** IMAGEOWORDS G
PIE 0 G

* G
TRA GA50 G

* G
* G
GA30 CAL IFOMI G

ANA ONE
TNZ EXIT2 IF IFOMTzI,3*5, OR 7, DELETE ABSCISSA PRINTOUT

G
CLA XMIN FIRST ABSCISSA VALUE G
STO ABS G
LXA NV,4 FORM ABSCISSA VALUES G
TXi *41,4,I NV'1 G
SXD GA5I,4 I G
TXl *19,4,-1 NV G
AXT 0,I G
CLA ABS,1 G

LS2 FAD OELTX G
SIO ABS+Ivl G
1Xl *+Ol,,-! G
TIX LS2,4,1 G

SPUT OU1 THE ABSCISSA LINE G
CAL OTAPE
CALL WDATA G
Pli FM3 G

GASI PLI ARSO.** NV*I G
PZEf 0 G
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* G

EXIT2 ZAC HJS
RETURN PLOT4 HJS

SPACE 5 G
* OMIT

OMIT SAVE 2 DELETE PRINTOUT SEGMENTS
CLA* 3,4 G

* ARGUMENT TAKEN MOD 8, AS FOLLOWS G
* ARG=I, DELETE AbSCISSA VALUE PRINT G

TSX TFIXt2 4RG = 2, DELETE ORDINATE VALUE PRINTOUT

TMI GA37 ARG=3, t AND 2 G
ORA IFOMT ARG=4* DELETE POTTOM GRID LINE G

SLW IFOMT G

RETURN OMIT ARG=5, t AND 4 G
* G

GA37 CON ARG=69 2 AND 4 G
ANA [FONT ARG=7, 1, 2, AND) G

SLW IFCNT G
RETURN OMIT TO RESTORE, EAC'CUTE OMIT G
REM WITH THE NEGATIVES OF THE ABOVE ARGUMENTS
SPACE 5 G

* PLTAPE

PLTAPE SAVE 2 CHANGE OUTPUf fAPE NO. G

CLA* 3,4 G
TSX FIX,2 G
STO OTA7E G

RETURN PLTAPE G
SPACE 5 G

* BCDCON

* CONVERT INTEGEk IN MQ G
* TO BCD (99r9i9 MAX.) G
* IN LOGICAL AC. G
• G
* G

BCDCON AXT **,0 G
AXI 6,4 G

ZAC G

BCOl SLW 8CD2 G
ZAC G

DVP TEN G

XEC BCD2,4 G
GRA BCD2 G

TIX BCDI,491 G
TRA* 8CDCON G
NOP
ALS 6 G
ALS 12 G
ALS 18 G

ALS 24 G
ALS 30 G

BCD2 DEC 0 G
• G
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* G
SPACE 5 G
TSTFP

TSTFP TZE 292 CHECK FOR FLOATING POINT G
STO TEMP ITS CALLING SEQUENCE IS
SSP TSX TSTFP,2
SUB MSO4 THE ARGUMENT IS IN THE ACCUMULATOR
T1i GAIl G
CLA TEMP
TRA 2,2 FLOATING-POINT RETURN G

GAll CLA TEMP G
TRA 1|2 NON-FLOATING-POINT RETURN G
SPACE 5 G

* FLOAT

FLOAT ORA CONST FLOAT FLOATS A NUMBER KkOWN TO BE AN INTEGER
FAD CONST THE CALLING SEQUENCE IS
TRA 1,2 TSX FLOAT,2 WITH ARGUMENT IN ACCUMULATOR
SPICE • G

* FIX

• CONVERT ARGUMENT TO FULL-WORD INTEGEG
FIX SSP POSITIVE RESULT G
TFIX LRS 26 SIGNED RESULT G

TNZ FIX2 IF NON-ZERO, CONSIDERED FLOATING G
LLS 26 ALREADY FIXED G
TRA 1,2

FIX2 LLS 26 RESTORE FLOATING NUMBER G
FIXI UFA CONST FIXES A NUMBER KNOWN TO BE IM FLOATING POINT

LRS 27
ZAC G
LLS 27
TRA 1,2
SPACE 5 G

* PLACFv PLACB

* PLACE BCD CHARACTER IN G
* I-TH CHARACTER POSITION OF G
* A SPECIFIED REGION G
• TSX PLACEr4 G
• PZE BCD G
• PZE I G
• PZE REGION G
PLACF MSM GA36 -GA369 FORWARD ARRAYS G

TRA GA35 G
• G
PLACS MSP GA36 +GA369 BACKWARD ARRAYS G
* G
GA3S LOGO 2,4 t G

SIG TEM GZAC G

STQ TEKI TEMI1i/6, INDEX OF WORD CONTAINING CHAR POSITION
LAC TEMI,2 SET FOR FORWARD ARRAYS G
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MIT GA36 TEST IF FORWARD ARRAY G
LXA TEMI12 NO, SET FOR BACKWARD ARRAYS G
MPY SIX G
STQ TEMI TEMIzTEMB*6, CONTAINS TOTAL CHARACTER POSUTIONS
CLA TEM TEM, CONTAINS THE CHARACTER POSiTION
SUB TEMI
PAX 0.1 TEM-TEMI CHARACTER POSITION IN WORD
CLA 3,4
STA GA4 G
STA GAS G
CAL PLCMK91

GA4 ANA **92 ZERO THE CHARACTER POSITION G
SLW* GA4 G
CAL* 1,4 GET AND G
ANA MASK ISOLATE THE CHARACTER G
TNX GA5,1,O G

GA6 ARS 6 SHIFT IT INTO POSITION G
TIX GA6,191 G

GA5 ORA **,2 PUT CHARACTER INTO WORD G
SLW* GA5 G
TRA 4,4 RETURN

G
GA36 PZE 0 -=FORWARD ARRAY, +=BACKWARD ARRAY G

SPACE 5 G
ABS aSS COLIŽ ABSCISSA VALUES G

SCI 3,
BCI 1,1 SAMPLE LINE IMAGE G
BCI 1, FOR NUN-GRID LINES.
BCI i, I THIS IS LINE IMAGE USED IN STANDARD GRID.
8C' it EXECUTION OF PLOTI SETS UP NEW VALUES.
BCI t, I

BCI It

BCI i, IoC! 19,

BCI I,

BCl 1,
BCI 1, 1

BLANK BCI 1,1 FIRST WORD( O(- LINE IMAGE FOR NON-GRID LINES
BLNKK BCI 1,
CONST OCT 233000000000

BC! 3,
BC I,+ ----- SAMPLE LINE IMAGE G
BCI 1 -------- HORIZONTAL GRID LINtES.
BCi It--.--- THIS IS THE LINE IMAGE USED IN STANDARD GRID.
BCl 1, ------- EXECUTION OF PLOTI PRODUCES NEW VALUES.

BCl l,+-..+
BCl 1, ------
BCl I,-----

BCI I,------
BCI I-
BCl It ...--- -
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BC! 1,,-...

BC 1,-----
BCE I
BCt I.----.-

DASH BCi 19+ ------ IST WORD OF LINE IMAGE FOR HORIZ GRID LINES
DELTX DEC 0. INCR. BETWEEN VERTILAL LINES GDELTY DEC 0. INCR. BETWEEN HORIZ. LINES G

BCt It- DSH TO DSH-5 USED BY PLOT1 TO FILL OUT LAST
BCE It-- WORD OF HORIZ LINE IMAGE
BC I,---
BCE 1,....

BC I,-....
DSH BCt it------
EIGHT DEC 8
ERI BCE IVOPLOTI G
ER2 BCE 1OPLOT2
ER3 BCE 3,ONO PREVIOUS PLOT2
FIVE DEC 5
FIXV MAXIMUM HORIZONTAL LINE INDEX FOR PRINTING
FLAGI

GFORMATS FOR PRINTING THE IMAGE G
* 

GFMI BCE 1ItIXAlt GRID LINES G
FNIA BCE 1, 0 G3 G

BCE 1,PF9. G
FMIeB BCI is G4 G

BCE 2,,lX20A6) G
* 

G• NON-GRID LINES G
FM2 BCE 3(IlXAItlOX2OA6) G

G
* ABSCISSA LINE G
FM3 BCE 1,(IHo GFM3A BC! 1t 0 G5 G

BCE IvPF GFM3B BCE I, 15 G6 G
BCt 1,. G

FM3C BSI 1 3 G7 G
BCt li GFM3D BCE to t0 NV G
BCt 19F GFM3E BCt 1, 10 G9 G
BCE It. GFM3F BCE It 3 G7 G
BCE I,) GFORM BCE 1922A6) G

FPONE DEC 1.
FPTWO DEC 2.
FTHRE DEC 3.
FPFOR DEC 4.

SPACE 5 G* FORMAT PARAMEfERS G
* MODIFIABLE BY PLOI G
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* G
ORDINATE G3 P F 9.G4 G
LEFTMOST ABSCISSA G5 P F G6.G7 G

* OTHER ABSCISSA G5 P F G9.G7 G
G3 DEC 0 G
G4 DEC 3 G
G5 DEC 0 G
G7 DEC 3 G

4s * G
G6 DEC 15 G7+12 G
G9 DEC 10 SBV G

SPACE 5 G
GWID PZE G GRAPH WIDTH (NUMBER OF COLUMNS FOR IMAGE + 1)
I
IEYE BCI 1,1
IPLUS BCI I,+
IFOMi SWITCH CONTAINING INFORMATION FROM OMIT
IFOUR DEC 4
j G
K
L
LABEL
LINES DEC 50 *4* MAXIMUM HORIZONTAL LINE INDEX
MS0N4 OCT 000777777777

OCT 777777777700

[ OCT 777777770077

OCT 777777007777
OCT 777700777777
OCT 770077717777

PLCMK OCT 007777777777
MASK OCT 770000000000
NO5 DEC 0.5
N999 DEC .99
NUATA 1JUMBER OF DATA POINTS TO BE PLOTTED
NH DEC 5 *4* NUMBER OF HORIZONTAL GRID LINES
NV DEC 10 *4* NUMBER OF VERTICAL GRiD LINES
ONE DEC I
OTAPE DEC 6 OUTPUT TAPE (SET BY IPLTAPEI) G
RECLT PZE COL NUMBER OF COLUMNS IN OUTPUT LINE
SBH DEC 10 *4* NUMBER OF SPACES BETWEEN HORIZONTAL GRIDLINWBS
SBV PZE 0** SPACES BETWEEN VERTICAL GRID LINES *

six DEC 6
$[XF DEC 6.
SPANX DEC 0 XMAX-XMIN G
SPANY DEC 0 YMAX-YMIN G
TEM
TEMI
TEMP

TEN DEC 10
TOT DEC 100 *4* MAXIMUM COLUMN INDEX
TOTAL DEC 101 *4* TOTAL COLUMNS PER LINE
TOILS DEC O2 * NUMBER OF BCD CHARACTERS PER LINE
TWELV DEC 12
TWO DEC 2
U DEC 0. LINES PER UNIT Y G
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V DEC 0. LINES PER UNIT X G

WnRDS DEC 1? 7* NUMBER OF MACHINE LOCATIONS PER LINE
W 1O4G OCI 39 IMPROPER ARGUMENT
WRONI DEC 0 *** EQUALS I FOR UNSUCCESSFUL PLOT1
WRON2 EQUALS I FOR UNSUCCESSFUL PLOT2
WRON3 DEC I *** EQUALS I UNTIL SUCCESSFUL PLOT2
YAXIS G
XMAX
XMIN
YNAX
YMIN

END THIS IS THE LAST CARD

$:SMAP 10
C THIS PROGRAM IS USED IN CONJUNCTION WITH THE PLOITING ROUTINE
C TO ALLOW FORTRAN INPUT-OUTPUT FACILITY IN A MACHINE LANGUAGE
C PROGRAM

- RAND W038 1I/ ROUTINE FOR MAP USERS
* WHO WISH TO REFER TO THE STD FN4 I/0 PACKAGE.

* THIS ROUTINE IS IDENTICAL IN FUNCTION
0 THE 7090 ROUTINE X022. THIS 7044 VERSION IS

OFFERED COURTESY OF J D BABCOCK WITH THE BLESSINGS

ON THE 7090.

• CALLS ARE---

CAL L (LOGICAL TPAE NO. IN DECREMENT)
CALL (ROUTINE ENTRY)

• PZE FMT (BCD ONLY)

cp AI,TltNI
• OP A2,TZvN2

PZE 0 - LAST MUST BE ZERO.
* (RETURN)

• FMT !S LOCATION OF A STANDARD FN4 FORMAT STATEMENT
• AI,TI IS THE ADDR. OF FIRST DATA WORD (T-O,1,21
* NI IS NUMBER OF WORDS (A(IIA-N+Il
• OP IS PZE FOR DIRECT ADDRESSING
• OP IS MZIE FOR INDIRECT ADDRESSING

* ROUTINE ENTRIES ARE---
* (1) RDATA --- BCD INPUT
• (2) IN ---- BCU INPUT FOR ST0 INPUT UNi'T
• (CAL L NOT REQUIREDW
* (3) WDATA BCD OUTPUT
• (4) OUT BCD OUTPUT FOR STD OUTPUT (PNIT

* ICAL L NOT REQUIRED)
0 ('1 PUNCH BCO OUTPUT FOR STO PUNCH UNIT

S(CAL L NOT REQUIREDI
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( (6) WOIiN BINARY OUTPUT
* (7) ROIN •INARY INPUT

ENTRY WBIN
ENTRY R8IN
ENTRY IN

- ENTRY RDATA
ENTRY OUT
ENTRY WDATA
ENTRY PUNCH

*

WBIN AXT 0,0
SXA IR494
AXT 394
TRA DI

RBIN AXT Oto
SXA IR494
AXT 294
TRA Dl

PUNCH AXT 0,0 ALLON CALLS OF
CAL =7 TSL
TRA WOATA OR* TSX VARIETY

IN AXT 0,0

CAL =5 STD !NPUT UNIT
RDATA AXT 0,0

SXA XR4,4
AXT Ot4
TRA Di

OUT AXT 0,0
CAL =6 STD OUTPUT UNIT

WDATA AXT 0,0
SXA 1R4,4
AXT 1,4

Dt SLW DT SAVE LOGICAL TAPE NO.
SXA DR4,4
AXT 794
CAL* ENTRY+7,4 TEST FOR TSX OR TSL ENTRY
ANA ADT
TNZ 07
TIX *-3,4,l
MSP ENTRY

DR4 AXT **94 WAS A TRUE TSX ENTRY
TRA D6

OT PAC 094 FIX
TXI *19,4,-1 UP TRY TO SIMULATE
CLA 1R4 TSX ENTRY
STA TSLR4 SAVE PROG. IR4
SXA IR4,4
LXA 0R49,4
MSM ENTRY
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06 CLA SEL,4 TAPE
Sin DSEL SET UP TSH, STH
CLA END,4 AND FIL, RTN
STO DFND
CLA DVI,4sro DTi

CLA DV294
STO DT?
YXH 081Nt,4t TEST IF BCD OR BIN CALL
CLA HNL WAS BCD
STO CNVT SET CONVERT CALLLXA IR494

CAL 194 SET UP FORMAT
TXI *41t4.-I BUMP FOR FIRST DATA CALL
SXA IR4t4
ANA ADT
ORA BCDFM
TRA GO

DBIN CAL NOP FCR BINARY NOP 2,4
LDO BNL
STQ CNVI

GO SLW DFMT
CAL DT CALL TG SET UP
TSX UTVAR.t4 FILE NAME

* G!VE INITIAL CALL
DSEL IF* #* TSX TSHIOt4 OR TSX STHIO4
* OR TSBIO.,STBIO.
OFILE PZE "IL XX.
DFMT PIE **9,0** FORMAT FROM CALL (BCD-FORMAT9,BIN-NO

SNOW SET UP BASIC LOOP--
LXA IR4,4 PREPARE TO PULL OUT ARGUMENTS

D2 SXA [R4v4
CLA 194
TZE DEND CHECK IF DONE
PDC 094 COUNT
TXL IR4,4tO OUT IF NONE
SXD OTST94 SET TEST FOR NO. O WORDS
TPL D3 CHECK IF INDIRECT
ANA ADT YESt, KILL DECREMENT * PRFX.

ORA OCLA SET UP CLA
SLW *+I

** GETS CLA AT IF INDIRECT
03 STA 05 SAVE A

ANA TAG PICK UP
ORA SXD4 PROGRAMMER INDEX REGISTER
StW *+I AND PUT THE COMP. OF IT

LOC 0494 INTO IR4

SXD 04,4
o5 AXT *4,4 COMPUTE ADDR OF A-T
D4 TXI *+1,4,4*

SEA DTI,4 SET ADDR.S OF PUTS
SXA DT2,4 AND GETS
AXT 0,4 BEGIN LOOP



OTI 123P OR CIA DATA, T
CNVT * T=OII)-N (TSL HNLIO. OR 8NLIO.

OT2 NOP OR STO OATAtr

NOP= AXI 0,0

DYST TH DTI@49** -N IN DECR
IR4 AXT *9

TXI ' ~ -

BlEND * FINAL EXIT, TSX F1L1.10. 4
* OR TSX RTNIO.,4

* RESTORE AXT 0#0 ENTRIES
AXT 7,4
PXA 0,0
STA* ENTRY+794
TIX *-I,4tI
LXA IR494

Hit ENTRY WAS IY TSX OR 151
TRA DENDI WAS TSX OK-EXIT VIA 294
TXI *e1*49-2 WAS TSL, CALCULATE RETURN TRA
PXA 0,4
PAC 0,4 ADDR
SXA DENDI-194
IXA TSL!.494 RESTORE PROG. IR4
YRA **RETURN TO MAIN PROGRAM

DENDI YRA 2,4

BCOFM MZE **9,FMTSC.
BNI ISL BNLIO.
HNL YSL HNLIO.

PZE LOGICAL TAPE
ADr OCT 777717 SAVL ADDR AND TAG
OCLA CIA **to CLA ORDER

*TABLE OF INIYIAL CALLS

TS TI.4WBN*4O

TSX TSBIO.,4 RBIN-IR4 OF 3

IsX STHlO.t4 WDATA = 1R4 OF I
SEL sX TSHIO.,4 ROATA a R4 OF ()

TSX WLRIO.94 WfjUN
TSX RLRIfl.t4 '(BUN
TSX FILIO.94 WOATA

END TSX RTNIO.94 ROATA
* SkT UP HNLIO. vBNLIO. LOOPS
CLA **t4 3
AXY 0,0 2
CIA **94 1

DVI AXT 0,0 0

AXT 0,0 3
STO **t4 2
AXT 0,0 1

DV2 SrO **t4 0
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tNTRY PIE PUNCH
PIE WDA(A
PIE OUT
PIE RDATA
PIE It.
PIE WBIN
PIE RBIN

TSLR4 PZE *
TAG OCT 000000700000
SXD4 SXD 04.0
NOP EQU OVi

EXTERN UTVAR.
EXTERN TSBIO.
EXTERN STBOI.
EXTERN BNLIO.
EXTERN TSHIO.
EXTERN STHIO.
EXTERN HNLIO.
FXTERN FMTSC.
EXTERN RTNIO.

,EXTERN FILIO.
EXTERN WLRIO.
EXTERN RLRIO.
ENO

$NBMAP UTY

ENTRY UTVAR.

EXTERN ERLOC.
UTVAR. SXA UTVXv4 SAVE AETURN INDEX

LAC UTVX,4
SXA ERLOC.,4
LXA UTVXt4
LAS NFIEES STUP IF LOGICAL TAPE NUMBER EXCEEDS
TRA USTOP NUMBER OF FILES IN TABLE.
NOP
PAC 94
CLA IOU,4 PICKUP ADDRESS OF FCB POINTER
PAX 94
TXL USTOP-2#4,O STOP IF UNIT IS UNDEFINED

UTVX AXT S*,4 RESTORE RETURN INDEX
STO 294 SET LOCATION OF FCB
TRA 194 RETURN TO MAIN PROGRAM
LXA UTVX94
CLA* -194 RESTORE UNIT DESIGNATION

USTOP TSL FEXEM. ERROR, ILLEGAL UNIT REQUESTED.
PIE EXIT9,32 NO OPTIONAL RETURN

*0INPUT-OUTPUT LOGICAL UNIT TABLE
*ADDITIONS OR DELETIONS SHOULD BE MADE BETWEEN IOU AND NFILES
IOU PIE FILOO.
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PIE 1:1101.
PZE F I L02.
PIE 1:1103.
PIE 1:1104.
PZE 1:1105.
PIE FIL06.
PiE F I1L07.
PZE 1:1108.
PZE 1:1109.
PZE 1:1110.
PZE FuLl1.
PZE FI1L12.
PZE 1:1113.
PZE 1:1114.
PZE 1:1115.

NFILES PEXTERNU-
EXTERN 1:1101. ***
EXTERNFd 1:10.

EXTERN 1:1103.
EXTERN 1:1104.
i-XTERN FI105.
ETERN 1:1106.

EXTERN 1:1107. *5
EXTERN. 11108. 5**
EXTERN 1:1109. *55
EX TERN 1:1110. $5
~EXTERN FILl1. 55
EXTERN F:1112. 5*5

EXTERN 1:1113. 555
EXTERN 1:1114. ***

EXTERN 1:1115. s~s
EXTERN :-EXEM.,EXIT

END
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